login
Third column of Wythoff array.
15

%I #58 Aug 11 2022 11:57:17

%S 3,11,16,24,32,37,45,50,58,66,71,79,87,92,100,105,113,121,126,134,139,

%T 147,155,160,168,176,181,189,194,202,210,215,223,231,236,244,249,257,

%U 265,270,278,283,291,299,304,312

%N Third column of Wythoff array.

%C Also, positions of 3's in A139764, the smallest term in Zeckendorf representation of n. - _John W. Layman_, Aug 25 2011

%C The formula a(n) = 3*A003622(n)-n+1 = 3AA(n)-n+1 conjectured by Layman below is correct, since it is well known that AA(n)+1 = B(n) = A(n)+n, where B = A001950, and so 3AA(n)-n+1 = 3B(n)-n-2 = 3A(n)+2n-2. - _Michel Dekking_, Aug 31 2017

%C From _Amiram Eldar_, Mar 21 2022: (Start)

%C Numbers k for which the Zeckendorf representation A014417(k) ends with 1, 0, 0.

%C The asymptotic density of this sequence is 1/phi^4 = 2/(7+3*sqrt(5)), where phi is the golden ratio (A001622). (End)

%H Amiram Eldar, <a href="/A035337/b035337.txt">Table of n, a(n) for n = 0..10000</a>

%H J. H. Conway and N. J. A. Sloane, <a href="/A019586/a019586.pdf">Notes on the Para-Fibonacci and related sequences</a>.

%H Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Kimberling/kimberling719a.html">Complementary equations and Wythoff Sequences</a>, JIS, Vol. 11 (2008), Article 08.3.3.

%H N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a>.

%F a(n) = F(4)A(n)+F(3)(n-1) = 3A(n)+2n-2, where A = A000201 and F = A000045. - _Michel Dekking_, Aug 31 2017

%F It appears that a(n) = 3*A003622(n) - n + 1. - _John W. Layman_, Aug 25 2011

%p t := (1+sqrt(5))/2 ; [ seq(3*floor((n+1)*t)+2*n,n=0..80) ];

%t Table[3 Floor[n GoldenRatio] + 2 n - 2, {n, 46}] (* _Michael De Vlieger_, Aug 31 2017 *)

%o (Python)

%o from sympy import floor

%o from mpmath import phi

%o def a(n): return 3*floor((n + 1)*phi) + 2*n # _Indranil Ghosh_, Jun 10 2017

%o (Python)

%o from math import isqrt

%o def A035337(n): return 3*(n+isqrt(5*n**2)>>1)+(n-1<<1) # _Chai Wah Wu_, Aug 11 2022

%o (PARI) a(n) = 2*n + 3*floor((1+sqrt(5))*(n+1)/2); \\ _Altug Alkan_, Sep 18 2017

%Y Cf. A001622, A014417, A139764.

%Y Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

%K nonn

%O 0,1

%A _N. J. A. Sloane_ and _J. H. Conway_