login
A134864
Wythoff BBB numbers.
11
13, 34, 47, 68, 89, 102, 123, 136, 157, 178, 191, 212, 233, 246, 267, 280, 301, 322, 335, 356, 369, 390, 411, 424, 445, 466, 479, 500, 513, 534, 555, 568, 589, 610, 623, 644, 657, 678, 699, 712, 733, 746, 767, 788, 801, 822, 843, 856, 877, 890, 911, 932, 945
OFFSET
1,1
COMMENTS
The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BBB=3A+5B.
LINKS
Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences 11 (2008) Article 08.3.3.
FORMULA
a(n) = B(B(B(n))), n>=1, with B=A001950, the upper Wythoff sequence.
MAPLE
a:=n->floor(n*((1+sqrt(5))/2)^2): [a(a(a(n)))$n=1..55]; # Muniru A Asiru, Nov 24 2018
MATHEMATICA
Nest[Quotient[#(3+Sqrt@5), 2]&, #, 3]&/@Range@100 (* Federico Provvedi, Nov 24 2018 *)
b[n_]:=Floor[n GoldenRatio^2]; a[n_]:=b[b[b[n]]]; Array[a, 60] (* Vincenzo Librandi, Nov 24 2018 *)
PROG
(Python)
from sympy import floor
from mpmath import phi
def B(n): return floor(n*phi**2)
def a(n): return B(B(B(n))) # Indranil Ghosh, Jun 10 2017
(Python)
from math import isqrt
def A134864(n): return (m:=5*n)+(((n+isqrt(n*m))&-2)<<2) # Chai Wah Wu, Aug 10 2022
CROSSREFS
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
Sequence in context: A124659 A164539 A245170 * A093100 A292472 A081271
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 14 2007
STATUS
approved