login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089910 Indices n at which blocks (1;1) occur in infinite Fibonacci word, i.e., such that A005614(n) = A005614(n+1) = 1. 6
4, 9, 12, 17, 22, 25, 30, 33, 38, 43, 46, 51, 56, 59, 64, 67, 72, 77, 80, 85, 88, 93, 98, 101, 106, 111, 114, 119, 122, 127, 132, 135, 140, 145, 148, 153, 156, 161, 166, 169, 174, 177, 182, 187, 190, 195, 200, 203, 208, 211, 216, 221, 224, 229, 232, 237, 242, 245 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is the number k such that floor(k/r) = floor(n*r^2), where r = golden ratio. - Clark Kimberling, May 03 2015

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.

N. Fox, On Aperiodic Subtraction Games with Bounded Nim Sequence, arXiv preprint arXiv:1407.2823 [math.CO], 2014.

U. Larsson, N. Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.

FORMULA

a(n) = floor((2+sqrt(5))*n) + 0 or 1;

floor(n*(2+sqrt(5))) + b(a(n)) - a(n) = 0 where b(x) = A078588(x) = x + 1 + ceiling(x*sqrt(5)) - 2*ceiling(x*(1+sqrt(5))/2).

For n >= 2, a(n) = a(n-1) + d, where d = 5 if n-1 is in A000201, else d = 3. - Clark Kimberling, May 03 2015

a(n) = A003623(n) + 1 = A(B(n)) + 1, where A(B(n)) are the Wythoff AB-numbers. - Michel Dekking, Sep 15 2016

MAPLE

phi:=(1+sqrt(5))/2:  seq(floor(phi*floor(n*phi^2))+1, n=1..80); # Michel Dekking, Sep 15 2016

MATHEMATICA

r = GoldenRatio; u = Flatten[Table[Select[Range[Floor[(r^2 + r) n], Floor[(r^2 + r) n + 1]], Floor[#/r] == Floor[n*r^2] &], {n, 1, 100}]] (* Clark Kimberling, May 03 2015 *)

CROSSREFS

Cf. A000201, A001950, A026352, A270788.

Sequence in context: A312861 A301688 A276885 * A312862 A177880 A059269

Adjacent sequences:  A089907 A089908 A089909 * A089911 A089912 A089913

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Nov 15 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 05:01 EDT 2018. Contains 316336 sequences. (Running on oeis4.)