login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270788
Unique fixed point of the 3-symbol Fibonacci morphism phi-hat_2.
13
1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3
OFFSET
1,2
COMMENTS
Fixed point of the morphism phi-hat_2 given by 1 --> 12, 2 --> 3, 3 --> 12. [Joerg Arndt, Apr 10 2016]
This sequence is the [0->12, 1->3]-transform of the Fibonacci word A003849: if T(0):=12, T(1):=3, then one proves easily with induction that T(phi_1^n(0)) = phi-hat_2^{n+1}(1), and T(phi_1^n(1)) = phi-hat_2^{n+1}(2), where phi_1 denotes the Fibonacci morphism given by 0 --> 01, 1 --> 0. - Michel Dekking, Dec 29 2019
LINKS
F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
FORMULA
Let A(n)=floor(n*tau), B(n)=n+floor(n*tau), i.e., A and B are the lower and upper Wythoff sequences, A=A000201, B=A001950. Then a(n)=1 if n=A(A(k)) for some k; a(n)=2 if n=B(k) for some k; a(n)=3 if n=A(B(k)) for some k. - Michel Dekking, Dec 27 2016
MAPLE
with(ListTools);
psi:=proc(S)
Flatten(subs( {1=[1, 2], 2=[3], 3=[1, 2]}, S));
end;
S:=[1];
for n from 1 to 10 do S:=psi(S): od:
S;
MATHEMATICA
m = 121; (* number of terms required *)
S[1] = {1};
S[n_] := S[n] = SubstitutionSystem[{1 -> {1, 2}, 2 -> {3}, 3 -> {1, 2}}, S[n-1]];
For[n = 2, True, n++, If[PadRight[S[n], m] == PadRight[S[n-1], m], Print["n = ", n]; Break[]]];
Take[S[n], m] (* Jean-François Alcover, Feb 15 2023 *)
CROSSREFS
Cf. A159917 (same sequence if we map 1->2, 2->0, 3->1).
Sequence in context: A295561 A076423 A075660 * A190496 A193926 A211450
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 30 2016
EXTENSIONS
More terms from Joerg Arndt, Apr 10 2016
Offset changed to 1 by Michel Dekking, Dec 27 2016
STATUS
approved