login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Unique fixed point of the 3-symbol Fibonacci morphism phi-hat_2.
13

%I #47 Feb 15 2023 13:44:14

%S 1,2,3,1,2,1,2,3,1,2,3,1,2,1,2,3,1,2,1,2,3,1,2,3,1,2,1,2,3,1,2,3,1,2,

%T 1,2,3,1,2,1,2,3,1,2,3,1,2,1,2,3,1,2,1,2,3,1,2,3,1,2,1,2,3,1,2,3,1,2,

%U 1,2,3,1,2,1,2,3,1,2,3,1,2,1,2,3,1,2,3,1,2,1,2,3,1,2,1,2,3,1,2,3,1,2,1,2,3,1,2,1,2,3,1,2,3,1,2,1,2,3,1,2,3

%N Unique fixed point of the 3-symbol Fibonacci morphism phi-hat_2.

%C Fixed point of the morphism phi-hat_2 given by 1 --> 12, 2 --> 3, 3 --> 12. [_Joerg Arndt_, Apr 10 2016]

%C This sequence is the [0->12, 1->3]-transform of the Fibonacci word A003849: if T(0):=12, T(1):=3, then one proves easily with induction that T(phi_1^n(0)) = phi-hat_2^{n+1}(1), and T(phi_1^n(1)) = phi-hat_2^{n+1}(2), where phi_1 denotes the Fibonacci morphism given by 0 --> 01, 1 --> 0. - _Michel Dekking_, Dec 29 2019

%H Joerg Arndt, <a href="/A270788/b270788.txt">Table of n, a(n) for n = 1..1000</a>

%H F. Michel Dekking, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Dekking/dekk4.html">Morphisms, Symbolic Sequences, and Their Standard Forms</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.

%H Shuo Li, <a href="https://arxiv.org/abs/2106.05672">Zeckendorf expansion, Dirichlet series and infinite series involving the infinite Fibonacci word</a>, arXiv:2106.05672 [math.NT], 2021.

%F Let A(n)=floor(n*tau), B(n)=n+floor(n*tau), i.e., A and B are the lower and upper Wythoff sequences, A=A000201, B=A001950. Then a(n)=1 if n=A(A(k)) for some k; a(n)=2 if n=B(k) for some k; a(n)=3 if n=A(B(k)) for some k. - _Michel Dekking_, Dec 27 2016

%p with(ListTools);

%p psi:=proc(S)

%p Flatten(subs( {1=[1,2], 2=[3], 3=[1,2]}, S));

%p end;

%p S:=[1];

%p for n from 1 to 10 do S:=psi(S): od:

%p S;

%t m = 121; (* number of terms required *)

%t S[1] = {1};

%t S[n_] := S[n] = SubstitutionSystem[{1 -> {1, 2}, 2 -> {3}, 3 -> {1, 2}}, S[n-1]];

%t For[n = 2, True, n++, If[PadRight[S[n], m] == PadRight[S[n-1], m], Print["n = ", n]; Break[]]];

%t Take[S[n], m] (* _Jean-François Alcover_, Feb 15 2023 *)

%Y Cf. A159917 (same sequence if we map 1->2, 2->0, 3->1).

%Y Cf. A000201, A001950, A003849.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, Mar 30 2016

%E More terms from _Joerg Arndt_, Apr 10 2016

%E Offset changed to 1 by _Michel Dekking_, Dec 27 2016