The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270790 Multiplier of polynomial P_n(x) arising from RNA combinatorics. 3
 1, 21, 11, 143, 88179, 111435, 111435, 1361270295, 1137235, 9945637, 16009448637, 19293438101, 3607872924887, 2630885818709841, 195084537038811, 45500599374052095, 1472444896343699846295, 1997334750675075735, 145805436799280528655, 107268833547674677179 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Gheorghe Coserea, Table of n, a(n) for n = 1..100 R. C. Penner, Moduli Spaces and Macromolecules, Bull. Amer. Math. Soc., 53 (2015), 217-268. See p. 259. FORMULA a(g) * P_g(0) = A035319(g) = (4*g-1)!!/(2*g+1), where P_g(x) is the polynomial associated with row g of the triangle A270791. PROG (PARI) G = 20; N = 3*G + 1; F = 1; gmax(n) = min(n\2, G); Q = matrix(N+1, G+1); Qn() = (matsize(Q)[1] - 1); Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; Qset(n, g, v) = { Q[n+1, g+1] = v }; Quadric({x=1}) = { Qset(0, 0, x); for (n = 1, Qn(), for (g = 0, gmax(n), my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); }; Quadric('x + O('x^(F+1))); Kol(g) = vector(Qn()+2-F-2*g, n, polcoeff(Qget(n+F-2 + 2*g, g), F, 'x)); P(g) = { my(x = 'x + O('x^(G+2))); return(Pol(Ser(Kol(g)) * (1-4*x)^(3*g-1/2), 'x)); }; vector(G, g, content(P(g))) \\ Gheorghe Coserea, Apr 17 2016 CROSSREFS Cf. A035309, A035319, A270791. Sequence in context: A086981 A114011 A300943 * A300887 A301497 A258083 Adjacent sequences: A270787 A270788 A270789 * A270791 A270792 A270793 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 28 2016 EXTENSIONS More terms from Gheorghe Coserea, Apr 17 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 21:28 EDT 2023. Contains 365531 sequences. (Running on oeis4.)