login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A035319
Number of rooted maps of genus n with one vertex and one face; the maps are considered on orientable surfaces and contain 2n edges.
8
1, 1, 21, 1485, 225225, 59520825, 24325703325, 14230536445125, 11288163762500625, 11665426077721040625, 15230046989184655753125, 24515740420894935215128125, 47702727710977364941596305625
OFFSET
0,3
COMMENTS
a(n) is also the number of 2-permutations in Sym(4n-1), for n>1 (see Doignon and Labarre). - Anthony Labarre, Jun 19 2007
LINKS
Nikita Alexeev and Peter Zograf, Hultman numbers, polygon gluings and matrix integrals, arXiv preprint arXiv:1111.3061 [math.PR], 2011.
J.-P. Doignon and A. Labarre, On Hultman Numbers, J. Integer Seq., 10 (2007), 13 pages.
T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. I, J. Comb. Theory B 13 (1972), 192-218 (Tab.1).
FORMULA
a(n) = A035318(2*n). - Valery A. Liskovets, Apr 13 2006
It appears that this is given by the formula (4n)!/2^{2n}(2n+1)! = (4n-1)!!/(2n+1). (This sequence arose -- conjecturally, but it shouldn't be too hard to make it rigorous -- as the unique nontrivial Betti number of a certain poset associated to the hyperoctahedral group.) - Eric M. Rains (rains(AT)caltech.edu), Jan 24 2006
a(n) = (4n)!/(2^(2n)(2n+1)!) = (4n-1)!!/(2n+1) = A001147(2n)/(2n+1). - Valery A. Liskovets, Apr 13 2006
MAPLE
A035319 := proc(n)
(4*n)!/4^n/(2*n+1)! ;
end proc:
seq(A035319(n), n=0..10) ; # R. J. Mathar, Jun 12 2018
PROG
(PARI) a(n) = (4*n)!/((2*n+1)!*4^n); \\ Gheorghe Coserea, Jan 21 2017
CROSSREFS
Right-hand diagonal of A035309.
Cf. A035309.
Sequence in context: A298851 A118446 A130332 * A278323 A301432 A220561
KEYWORD
nonn
EXTENSIONS
More terms from Valery A. Liskovets, Apr 13 2006
STATUS
approved