OFFSET
0,3
COMMENTS
a(n) is also the number of 2-permutations in Sym(4n-1), for n>1 (see Doignon and Labarre). - Anthony Labarre, Jun 19 2007
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 0..200
Nikita Alexeev and Peter Zograf, Hultman numbers, polygon gluings and matrix integrals, arXiv preprint arXiv:1111.3061 [math.PR], 2011.
J.-P. Doignon and A. Labarre, On Hultman Numbers, J. Integer Seq., 10 (2007), 13 pages.
T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. I, J. Comb. Theory B 13 (1972), 192-218 (Tab.1).
FORMULA
a(n) = A035318(2*n). - Valery A. Liskovets, Apr 13 2006
It appears that this is given by the formula (4n)!/2^{2n}(2n+1)! = (4n-1)!!/(2n+1). (This sequence arose -- conjecturally, but it shouldn't be too hard to make it rigorous -- as the unique nontrivial Betti number of a certain poset associated to the hyperoctahedral group.) - Eric M. Rains (rains(AT)caltech.edu), Jan 24 2006
a(n) = (4n)!/(2^(2n)(2n+1)!) = (4n-1)!!/(2n+1) = A001147(2n)/(2n+1). - Valery A. Liskovets, Apr 13 2006
MAPLE
A035319 := proc(n)
(4*n)!/4^n/(2*n+1)! ;
end proc:
seq(A035319(n), n=0..10) ; # R. J. Mathar, Jun 12 2018
PROG
(PARI) a(n) = (4*n)!/((2*n+1)!*4^n); \\ Gheorghe Coserea, Jan 21 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Valery A. Liskovets, Apr 13 2006
STATUS
approved