login
A270791
Triangle read by rows: coefficients of polynomials P_n(x) arising from RNA combinatorics.
3
1, 1, 1, 158, 558, 135, 2339, 18378, 13689, 1575, 1354, 18908, 28764, 9660, 675, 617926, 13447818, 34604118, 23001156, 4534875, 218295, 525206428, 16383145284, 63886133214, 70424606988, 26926791930, 3567422250, 127702575, 50531787, 2134308548, 11735772822, 19350632598, 12106771137, 3063221550, 295973325, 8292375
OFFSET
1,4
COMMENTS
"... polynomials like these with nonnegative integral coefficients might reasonably be expected to be generating polynomials for some as yet unknown fatgraph structure."
LINKS
Gheorghe Coserea, Rows n = 1..100, flattened
J. E. Andersen, R. C. Penner, C. M. Reidys, M. S. Waterman, Topological classification and enumeration of RNA structures by genus, J. Math. Biol. 65 (2013) 1261-1278
R. C. Penner, Moduli Spaces and Macromolecules, Bull. Amer. Math. Soc., 53 (2015), 217-268. See p. 259.
FORMULA
The g.f. for column g>0 of triangle A035309 is x^(2*g) * A270790(g) * P_g(x) / (1-4*x)^(3*g-1/2), where P_g(x) is the polynomial associated with row g of the triangle. - Gheorghe Coserea, Apr 17 2016
EXAMPLE
For n = 3 we have P_3(x) = 158*x^2 + 558*x + 135.
For n = 4 we have P_4(x) = 2339*x^3 + 18378*x^2 + 13689*x + 1575.
Triangle begins:
n\k [1] [2] [3] [4] [5] [6]
[1] 1;
[2] 1, 1;
[3] 158 558, 135;
[4] 2339, 18378, 13689, 1575;
[5] 1354, 18908, 28764, 9660, 675;
[6] 617926, 13447818, 34604118, 23001156, 4534875, 218295;
[7] ...
PROG
(PARI)
G = 8; N = 3*G + 1; F = 1; gmax(n) = min(n\2, G);
Q = matrix(N+1, G+1); Qn() = (matsize(Q)[1] - 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, Qn(), for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x + O('x^(F+1)));
Kol(g) = vector(Qn()+2-F-2*g, n, polcoeff(Qget(n+F-2 + 2*g, g), F, 'x));
P(g) = {
my(x = 'x + O('x^(G+2)));
return(Pol(Ser(Kol(g)) * (1-4*x)^(3*g-1/2), 'x));
};
concat(vector(G, g, Vec(P(g) / content(P(g))))) \\ Gheorghe Coserea, Apr 17 2016
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
N. J. A. Sloane, Mar 28 2016
EXTENSIONS
More terms from Gheorghe Coserea, Apr 17 2016
STATUS
approved