login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331552
Expansion of (1 + 2*x)/(1 + 4*x^2)^(3/2).
2
1, 2, -6, -12, 30, 60, -140, -280, 630, 1260, -2772, -5544, 12012, 24024, -51480, -102960, 218790, 437580, -923780, -1847560, 3879876, 7759752, -16224936, -32449872, 67603900, 135207800, -280816200, -561632400, 1163381400, 2326762800, -4808643120, -9617286240, 19835652870
OFFSET
0,2
LINKS
FORMULA
|a(n)| = A100071(n+1).
a(n) = Sum_{k=0..n} (-2)^(n-k) * (n+k+1) * binomial(n,k) * binomial(n+k,k).
a(n) = Sum_{k=0..n} (-1)^k * (k+1) * binomial(n+1,k+1)^2.
n * (2*n-1) * a(n) = 2 * a(n-1) - 4 * n * (2*n+1) * a(n-2) for n>1.
E.g.f.: (1 + 2*x)*BesselJ(0,2*x) - 2*x*BesselJ(1,2*x). - Ilya Gutkovskiy, Mar 04 2021
MATHEMATICA
a[n_] := Sum[(-1)^k * (k + 1) * Binomial[n + 1, k + 1]^2, {k, 0, n}]; Array[a, 33, 0] (* Amiram Eldar, Jan 20 2020 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec((1+2*x)/(1+4*x^2)^(3/2))
(PARI) {a(n) = sum(k=0, n, (-2)^(n-k)*(n+k+1)*binomial(n, k)*binomial(n+k, k))}
(PARI) {a(n) = sum(k=0, n, (-1)^k*(k+1)*binomial(n+1, k+1)^2)}
(Magma) R<x>:=PowerSeriesRing(Rationals(), 33); Coefficients(R!( (1 + 2*x)/(1 + 4*x^2)^(3/2))); // Marius A. Burtea, Jan 20 2020
(Magma) [&+[(-1)^k*(k+1)*Binomial(n+1, k+1)^2:k in [0..n]]:n in [0..33]]; // Marius A. Burtea, Jan 20 2020
CROSSREFS
Column 1 of A331511.
Cf. A100071.
Sequence in context: A162214 A309728 A100071 * A129912 A283477 A182863
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 20 2020
STATUS
approved