OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
FORMULA
|a(n)| = A100071(n+1).
a(n) = Sum_{k=0..n} (-2)^(n-k) * (n+k+1) * binomial(n,k) * binomial(n+k,k).
a(n) = Sum_{k=0..n} (-1)^k * (k+1) * binomial(n+1,k+1)^2.
n * (2*n-1) * a(n) = 2 * a(n-1) - 4 * n * (2*n+1) * a(n-2) for n>1.
E.g.f.: (1 + 2*x)*BesselJ(0,2*x) - 2*x*BesselJ(1,2*x). - Ilya Gutkovskiy, Mar 04 2021
MATHEMATICA
a[n_] := Sum[(-1)^k * (k + 1) * Binomial[n + 1, k + 1]^2, {k, 0, n}]; Array[a, 33, 0] (* Amiram Eldar, Jan 20 2020 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec((1+2*x)/(1+4*x^2)^(3/2))
(PARI) {a(n) = sum(k=0, n, (-2)^(n-k)*(n+k+1)*binomial(n, k)*binomial(n+k, k))}
(PARI) {a(n) = sum(k=0, n, (-1)^k*(k+1)*binomial(n+1, k+1)^2)}
(Magma) R<x>:=PowerSeriesRing(Rationals(), 33); Coefficients(R!( (1 + 2*x)/(1 + 4*x^2)^(3/2))); // Marius A. Burtea, Jan 20 2020
(Magma) [&+[(-1)^k*(k+1)*Binomial(n+1, k+1)^2:k in [0..n]]:n in [0..33]]; // Marius A. Burtea, Jan 20 2020
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 20 2020
STATUS
approved