OFFSET
0,18
COMMENTS
An n-regular set-system is a finite set of nonempty sets in which each element appears in n blocks.
A set-system is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of binary matrices with k distinct columns and any number of distinct nonzero rows with n ones in every column and rows in decreasing lexicographic order.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..209
FORMULA
EXAMPLE
Array begins:
==========================================================
n\k | 0 1 2 3 4 5 6 7
----+-----------------------------------------------------
0 | 1 1 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 0 1 5 43 518 8186 163356 ...
3 | 1 0 0 5 175 9426 751365 84012191 ...
4 | 1 0 0 1 272 64453 23553340 13241130441 ...
5 | 1 0 0 0 205 248685 421934358 1176014951129 ...
6 | 1 0 0 0 80 620548 5055634889 69754280936418 ...
7 | 1 0 0 0 15 1057989 43402628681 2972156676325398 ...
...
The A(2,3) = 5 matrices are:
[1 1 1] [1 1 0] [1 1 0] [1 0 1] [1 1 0]
[1 0 0] [1 0 1] [1 0 0] [1 0 0] [1 0 1]
[0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1]
[0 0 1] [0 0 1] [0 0 1] [0 1 0]
The corresponding set-systems are:
{{1,2,3}, {1}, {2}, {3}},
{{1,2}, {1,3}, {2,3}},
{{1,2}, {1,3}, {2}, {3}},
{{1,2}, {1}, {2,3}, {3}},
{{1,3}, {1}, {2,3}, {2}}.
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, k<=1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 08 2020
STATUS
approved