login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331039
Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set-systems on a k-set.
14
1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 5, 0, 0, 1, 0, 1, 43, 5, 0, 0, 1, 0, 1, 518, 175, 1, 0, 0, 1, 0, 1, 8186, 9426, 272, 0, 0, 0, 1, 0, 1, 163356, 751365, 64453, 205, 0, 0, 0, 1, 0, 1, 3988342, 84012191, 23553340, 248685, 80, 0, 0, 0, 1
OFFSET
0,18
COMMENTS
An n-regular set-system is a finite set of nonempty sets in which each element appears in n blocks.
A set-system is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of binary matrices with k distinct columns and any number of distinct nonzero rows with n ones in every column and rows in decreasing lexicographic order.
LINKS
FORMULA
A(n, k) = Sum_{j=1..k} Stirling1(k, j)*A188445(n, j) for n, k >= 1.
A(n, k) = 0 for k >= 1, n > 2^(k-1).
A331654(n) = Sum_{d|n} A(n/d, d).
EXAMPLE
Array begins:
==========================================================
n\k | 0 1 2 3 4 5 6 7
----+-----------------------------------------------------
0 | 1 1 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 0 1 5 43 518 8186 163356 ...
3 | 1 0 0 5 175 9426 751365 84012191 ...
4 | 1 0 0 1 272 64453 23553340 13241130441 ...
5 | 1 0 0 0 205 248685 421934358 1176014951129 ...
6 | 1 0 0 0 80 620548 5055634889 69754280936418 ...
7 | 1 0 0 0 15 1057989 43402628681 2972156676325398 ...
...
The A(2,3) = 5 matrices are:
[1 1 1] [1 1 0] [1 1 0] [1 0 1] [1 1 0]
[1 0 0] [1 0 1] [1 0 0] [1 0 0] [1 0 1]
[0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1]
[0 0 1] [0 0 1] [0 0 1] [0 1 0]
The corresponding set-systems are:
{{1,2,3}, {1}, {2}, {3}},
{{1,2}, {1,3}, {2,3}},
{{1,2}, {1,3}, {2}, {3}},
{{1,2}, {1}, {2,3}, {3}},
{{1,3}, {1}, {2,3}, {2}}.
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, k<=1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 08 2020
STATUS
approved