login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316480
Table read by rows: T(n,k), 0 <= k <= 9, is the number of n-digit squares whose average digit is exactly k.
9
1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 21, 0, 0, 1, 0, 0, 0, 0, 57, 0, 0, 42, 0, 0, 0, 0, 2, 0, 0, 192, 0, 0, 14, 0, 0, 0, 0, 52, 0, 0, 499, 0, 0, 0, 0, 0, 25, 191, 1281, 2658, 2282, 705, 65, 0, 0
OFFSET
1,24
COMMENTS
The only square whose average digit is 0 is the 1-digit number 0^2 = 0.
The only square whose average digit is 9 is the 1-digit number 3^2 = 9.
Suppose m^2 is an n-digit number whose average digit is an integer k, i.e., digitsum(m^2) = n*k. Since digitsum(m^2) mod 9 = 0, 1, 4, or 7 (cf. A004159), it follows that
- if k = 1, 4, or 7, then n mod 9 = 0, 1, 4, or 7;
- if k = 2, 5, or 8, then n mod 9 = 0, 2, 5, or 8;
- if k = 3 or 6, then n mod 9 = 0, 3, or 6.
In this table, each possible combination of a value of k and a value of n mod 9 is identified with an asterisk (*):
.
n mod 9
.
0 1 2 3 4 5 6 7 8
+----------------------------------
1 | * * * *
|
2 | * * * *
|
3 | * * *
|
4 | * * * *
k |
5 | * * * *
|
6 | * * *
|
7 | * * * *
|
8 | * * * *
.
Not surprisingly, among the values k=1..8, the value of k that occurs least frequently as the average digit of a square is 8.
LINKS
EXAMPLE
Table begins
n\k| 0 1 2 3 4 5 6 7 8 9
---+---------------------------------------------------------
1 | 1 1 0 0 1 0 0 0 0 1
2 | 0 0 0 0 0 1 0 0 0 0
3 | 0 0 0 5 0 0 2 0 0 0
4 | 0 0 0 0 6 0 0 0 0 0
5 | 0 0 5 0 0 21 0 0 1 0
6 | 0 0 0 57 0 0 42 0 0 0
7 | 0 2 0 0 192 0 0 14 0 0
8 | 0 0 52 0 0 499 0 0 0 0
9 | 0 25 191 1281 2658 2282 705 65 0 0
10 | 0 12 0 0 5308 0 0 93 0 0
11 | 0 0 548 0 0 13597 0 0 1 0
12 | 0 0 0 23310 0 0 12871 0 0 0
13 | 0 77 0 0 143724 0 0 753 0 0
14 | 0 0 5572 0 0 360720 0 0 1 0
15 | 0 0 0 449170 0 0 239403 0 0 0
16 | 0 102 0 0 3990950 0 0 6029 0 0
17 | 0 0 51977 0 0 9994767 0 0 4 0
18 | 0 417 157382 8665925 55115308 45351595 4568205 36552 8 0
MATHEMATICA
Block[{nn = 9, s}, s = MapAt[Prepend[#, 0] &, Map[Mean@ IntegerDigits[#] &, SplitBy[Range[10^(nn/2)]^2, IntegerLength], {2}], 1]; Table[Count[s[[n]], k], {n, nn}, {k, 0, 9}]] // Flatten (* Michael De Vlieger, Jul 06 2018 *)
CROSSREFS
Cf. A316481-A316488 (Squares whose arithmetic mean of digits is k, for k=1..8).
Sequence in context: A331039 A171915 A287703 * A099224 A136598 A193524
KEYWORD
nonn,tabf,base
AUTHOR
Jon E. Schoenfield, Jul 04 2018
STATUS
approved