This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171915 Van Eck sequence (cf. A181391) starting with a(1) = 5. 1
 5, 0, 0, 1, 0, 2, 0, 2, 2, 1, 6, 0, 5, 12, 0, 3, 0, 2, 9, 0, 3, 5, 9, 4, 0, 5, 4, 3, 7, 0, 5, 5, 1, 23, 0, 5, 4, 10, 0, 4, 3, 13, 0, 4, 4, 1, 13, 5, 12, 35, 0, 8, 0, 2, 36, 0, 3, 16, 0, 3, 3, 1, 16, 5, 16, 2, 12, 18, 0, 10, 32, 0, 3, 12, 7, 46, 0, 5, 14, 0, 3, 8, 30, 0, 4, 40, 0, 3, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A van Eck sequence is defined recursively by a(n+1) = min { k > 0 | a(n-k) = a(n) } or 0 if this set is empty, i.e., a(n) does not appear earlier in the sequence. - M. F. Hasler, Jun 15 2019 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10001 PROG (Python) A171915_list, l = [5, 0], 0 for n in range(1, 10**4):     for m in range(n-1, -1, -1):         if A171915_list[m] == l:             l = n-m             break     else:         l = 0     A171915_list.append(l) # Chai Wah Wu, Jan 02 2015 (PARI) A171915_vec(N, a=5, i=Map())={vector(N, n, a=if(n>1, iferr(n-mapget(i, a), E, 0)+mapput(i, a, n), a))} \\ M. F. Hasler, Jun 15 2019 CROSSREFS Cf. A181391, A171911, ..., A171918 (same but starting with 0, 1, ..., 8). Sequence in context: A047754 A048682 A186716 * A287703 A316480 A099224 Adjacent sequences:  A171912 A171913 A171914 * A171916 A171917 A171918 KEYWORD nonn AUTHOR N. J. A. Sloane, Oct 22 2010 EXTENSIONS Name and other sections edited by M. F. Hasler, Jun 15 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 17:27 EDT 2019. Contains 327136 sequences. (Running on oeis4.)