login
A380270
Decimal expansion of Integral_{x=1..A070769} li(x) dx (negated), where li(x) is the logarithmic integral.
1
5, 0, 0, 1, 0, 2, 3, 3, 6, 2, 7, 0, 1, 7, 0, 6, 0, 6, 4, 1, 1, 9, 5, 8, 3, 7, 3, 3, 8, 1, 9, 2, 6, 8, 1, 2, 7, 8, 0, 1, 7, 7, 7, 2, 5, 2, 0, 1, 4, 6, 9, 6, 1, 7, 7, 8, 2, 8, 6, 4, 0, 4, 4, 9, 3, 8, 0, 9, 6, 7, 1, 4, 7, 3, 0, 3, 0, 9, 2, 3, 8, 7, 2, 9, 5, 3, 0, 7, 1, 1, 1, 6, 5, 2, 0, 6, 8, 2, 9, 8, 9, 1, 4, 9, 1
OFFSET
0,1
COMMENTS
A070769 is Soldner's constant, where li(A070769)=0.
Integral_{x=0..1} li(x) dx = -log(2) then Integral_{x=0..A070769} li(x) dx = A380270 - log(2) = -1.19324951683011591582919049...
EXAMPLE
-0.500102336270170606411958373..
MATHEMATICA
y = x /. FindRoot[LogIntegral[x] == 0, {x, 1.5}, WorkingPrecision -> 200]; yy = -Integrate[LogIntegral[x], {x, 1, y}]; RealDigits[yy, 10, 105][[1]]
KEYWORD
cons,nonn
AUTHOR
Artur Jasinski, Jan 18 2025
STATUS
approved