

A270857


Decimal expansion of Sum_{n >= 1} G_n/n^2, where G_n are Gregory's coefficients.


4



4, 8, 2, 6, 4, 4, 2, 2, 1, 6, 2, 0, 4, 6, 2, 6, 1, 2, 3, 7, 9, 4, 2, 8, 3, 9, 1, 1, 4, 8, 5, 7, 5, 7, 7, 3, 9, 7, 0, 1, 2, 0, 3, 9, 6, 2, 7, 5, 6, 6, 5, 6, 7, 0, 5, 0, 2, 3, 0, 1, 6, 5, 1, 6, 2, 9, 5, 1, 5, 8, 0, 9, 1, 0, 7, 1, 8, 2, 0, 0, 9, 7, 6, 2, 4, 3, 0, 1, 7, 9, 5, 1, 1, 6, 5, 3, 4, 3, 0, 1, 5, 3, 7, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Gregory's coefficients (A002206 and A002207) are also known as (reciprocal) logarithmic numbers, Bernoulli numbers of the second kind and Cauchy numbers of the first kind. First few coefficients are G_1=+1/2, G_2=1/12, G_3=+1/24, G_4=19/720, etc.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000


FORMULA

Equals integral_{x=0..1} (li(1+x)  gamma  log(x))/x dx, where li(x) is the integral logarithm.


EXAMPLE

0.4826442216204626123794283911485757739701203962756656...


MAPLE

evalf(int((Li(1+x)gammaln(x))/x, x = 0..1), 120);


MATHEMATICA

N[Integrate[(LogIntegral[1 + x]  EulerGamma  Log[x])/x, {x, 0, 1}], 150]


CROSSREFS

Cf. A270859, A269330, A001620, A002206, A002207, A195189.
Sequence in context: A059627 A200603 A159591 * A113307 A021901 A159194
Adjacent sequences: A270854 A270855 A270856 * A270858 A270859 A270860


KEYWORD

nonn,cons


AUTHOR

Iaroslav V. Blagouchine, Mar 24 2016


STATUS

approved



