login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269330
Decimal expansion of the "alternating Euler constant" beta = li(2) - gamma.
3
4, 6, 7, 9, 4, 8, 1, 1, 5, 2, 1, 5, 9, 5, 9, 9, 2, 4, 2, 3, 8, 0, 7, 6, 7, 9, 9, 1, 1, 2, 2, 1, 0, 7, 0, 5, 4, 8, 0, 4, 5, 6, 2, 4, 2, 2, 1, 1, 2, 7, 7, 9, 7, 7, 0, 2, 7, 1, 4, 1, 9, 0, 9, 1, 9, 0, 1, 4, 5, 4, 7, 8, 4, 3, 2, 6, 9, 4, 8, 5, 9, 2, 3, 5, 7, 7, 0, 3, 4, 2, 3, 3, 4, 6, 3, 6, 6, 0, 6, 7, 9, 1, 3, 8
OFFSET
0,1
COMMENTS
The function li(x) is the integral logarithm, gamma is Euler's constant.
Decimal expansion of Sum_{n>=1} G_n/n = beta, where numbers G_n are Gregory's coefficients (see A002206 and A002207). In comparison to the Fontana-Mascheroni's series Sum_{n>=1} |G_n|/n = gamma (see A195189), the constant beta may be regarded as the "alternating Euler constant". A similar analogy also exists between gamma and log(4/Pi), see A094640.
Another striking analogy between beta and gamma follows from the fact that beta = Integral_{x=0..1} (1/log(1+x) - 1/x) dx, while gamma = Integral_{x=0..1} (1/log(1-x) + 1/x) dx.
For more details, see references below.
LINKS
Iaroslav V. Blagouchine, Table of n, a(n) for n = 0..1000
Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/pi, Journal of Mathematical Analysis and Applications (Elsevier), 2016. arXiv version, arXiv:1408.3902 [math.NT], 2014-2016.
Iaroslav V. Blagouchine, Another Alternating Analogue of Euler's Constant. The American Mathematical Monthly, vol. 120, no. 1, pp. 24-34, 2022.
Steven Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578v3 [math.HO], 2022.
FORMULA
Equals li(2) - gamma.
Equals Ei(log(2)) - gamma.
Equals Integral_{x=0..1} (1/log(1+x) - 1/x) dx.
Equals log(log(2)) + Sum_{k>=1} log(2)^k/(k*k!).
EXAMPLE
0.4679481152159599242380767991122107054804562422112779...
MAPLE
evalf(Li(2)-gamma, 120)
evalf(Ei(ln(2))-gamma, 120)
evalf(int(1/ln(1+x)-1/x, x = 0..1), 120)
evalf(ln(ln(2))+sum(ln(2)^k/(k*factorial(k)), k = 1..infinity), 120)
MATHEMATICA
RealDigits[LogIntegral[2] - EulerGamma, 10, 120][[1]]
RealDigits[ExpIntegralEi[Log[2]] - EulerGamma, 10, 120][[1]]
RealDigits[Integrate[1/Log[1+x] - 1/x, {x, 0, 1}], 10, 120][[1]]
RealDigits[Log[Log[2]] + Sum[Log[2]^k/(k*k!), {k, 1, ∞}], 10, 120][[1]]
PROG
(PARI) default(realprecision, 120); -real(eint1(-log(2)))-Euler
(PARI) default(realprecision, 120); intnum(x=0, 1, 1/log(1+x)-1/x) \\ Note: PARI/GP v. 2.7.3 is able to compute only 19 digits
(PARI) default(realprecision, 120); log(log(2))+sumpos(k=1, log(2)^k/(k*factorial(k)))
KEYWORD
nonn,cons
AUTHOR
STATUS
approved