OFFSET
0,1
COMMENTS
REFERENCES
Bernard Candelpergher, Ramanujan summation of divergent series, Berlin: Springer, 2017. See p. 105, eq. (3.23).
LINKS
Iaroslav V. Blagouchine and Marc-Antoine Coppo, A note on some constants related to the zeta-function and their relationship with the Gregory coefficients, The Ramanujan Journal, Vol. 47 (2018), pp. 457-473. See p. 470, eq. (37); arXiv preprint, arXiv:1703.08601 [math.NT], 2017.
Mümün Can, Ayhan Dil, Levent Kargin, Mehmet Cenkci and Mutlu Güloglu, Generalizations of the Euler-Mascheroni constant associated with the hyperharmonic numbers, arXiv:2109.01515 [math.NT], 2021.
FORMULA
Equals Integral_{x=0..1} (-li(1-x) + gamma + log(x))/x dx, where li(x) is the logarithmic integral.
Equals A131688 + gamma_1 + gamma^2/2 - zeta(2)/2, where gamma_1 = A082633 and gamma = A001620 (Candelpergher, 2017; Blagouchine and Coppo, 2018). - Amiram Eldar, Mar 18 2024
EXAMPLE
0.5290529699404390240722939394755897280940381716959625...
MAPLE
evalf(int((-Li(1-x)+gamma+ln(x))/x, x = 0..1), 150)
MATHEMATICA
N[Integrate[(-LogIntegral[1 - x] + EulerGamma + Log[x])/x, {x, 0, 1}], 150]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Iaroslav V. Blagouchine, Mar 24 2016
STATUS
approved