login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287703
Triangle read by rows, numerators of T(n,k) = (-1)^n*binomial(n-1,k)*Bernoulli(n+k)/ (n+k) for n>=1, 0<=k<=n-1.
1
1, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 1, 0, -1, 0, 5, 0, 0, 1, 0, -5, 0, 691, 0, -1, 0, 7, 0, -691, 0, 7, 0, 0, -2, 0, 691, 0, -14, 0, 3617, 0, 1, 0, -691, 0, 21, 0, -25319, 0, 43867, 0, 0, 691, 0, -10, 0, 75957, 0, -438670, 0, 174611, 0
OFFSET
1,20
COMMENTS
For the rational triangle the reciprocals of the row sums are the Apéry numbers A005430.
FORMULA
A005430(n) = 1 / (Sum_{k=0..n-1} T(n,k)) for n>=1.
EXAMPLE
The rational triangle starts (with row sums at the end of the line):
1: [1/2], 1/2
2: [1/12, 0], 1/12
3: [0, 1/60, 0], 1/60
4: [-1/120, 0, 1/84, 0], 1/280
5: [0, -1/63, 0, 1/60, 0], 1/1260
6: [1/252, 0, -1/24, 0, 5/132, 0], 1/5544
7: [0, 1/40, 0, -5/33, 0, 691/5460, 0], 1/24024
8: [-1/240, 0, 7/44, 0, -691/936, 0, 7/12, 0], 1/102960
9: [0, -2/33, 0, 691/585, 0, -14/3, 0, 3617/1020, 0], 1/437580
The numerators of the triangle are:
1: [ 1]
2: [ 1, 0]
3: [ 0, 1, 0]
4: [-1, 0, 1, 0]
5: [ 0, -1, 0, 1, 0]
6: [ 1, 0, -1, 0, 5, 0]
7: [ 0, 1, 0, -5, 0, 691, 0]
8: [-1, 0, 7, 0, -691, 0, 7, 0]
9: [ 0, -2, 0, 691, 0, -14, 0, 3617, 0]
MAPLE
T := (n, k) -> numer((-1)^n*binomial(n-1, k)*bernoulli(k+n)/(k+n)):
for n from 1 to 9 do seq(T(n, k), k=0..n-1) od;
MATHEMATICA
T[n_, k_]:=Numerator[(-1)^n*Binomial[n - 1, k] BernoulliB[k + n]/(k + n)]; Table[T[n, k], {n, 11}, {k, 0, n - 1}]//Flatten (* Indranil Ghosh, Jul 27 2017 *)
PROG
(PARI) T(n, k) = numerator((-1)^n*binomial(n-1, k)*bernfrac(k+n)/(k+n));
tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 28 2017
CROSSREFS
Cf. A005430 (Apéry), A287704 (denominators).
Sequence in context: A186716 A331039 A171915 * A316480 A099224 A136598
KEYWORD
sign,tabl,frac
AUTHOR
Peter Luschny, Jun 21 2017
STATUS
approved