The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287704 Triangle read by rows, denominators of T(n,k) = (-1)^(n+k)*binomial(n-1,k)* Bernoulli(n+k)/ (n+k) for n>=1, 0<=k<=n-1. 1
 2, 12, 1, 1, 60, 1, 120, 1, 84, 1, 1, 63, 1, 60, 1, 252, 1, 24, 1, 132, 1, 1, 40, 1, 33, 1, 5460, 1, 240, 1, 44, 1, 936, 1, 12, 1, 1, 33, 1, 585, 1, 3, 1, 1020, 1, 132, 1, 910, 1, 2, 1, 680, 1, 1596, 1, 1, 3276, 1, 1, 1, 680, 1, 1197, 1, 660, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Table of n, a(n) for n=1..66. EXAMPLE 1: 2 2: 12, 1 3: 1, 60, 1 4: 120, 1, 84, 1 5: 1, 63, 1, 60, 1 6: 252, 1, 24, 1, 132, 1 7: 1, 40, 1, 33, 1, 5460, 1 8: 240, 1, 44, 1, 936, 1, 12, 1 9: 1, 33, 1, 585, 1, 3, 1, 1020, 1 MAPLE T := (n, k) -> denom((-1)^(n+k)*binomial(n-1, k)*bernoulli(n+k)/(n+k)): for n from 1 to 9 do seq(T(n, k), k=0..n-1) od; MATHEMATICA T[n_, k_]:=Denominator[(-1)^n*Binomial[n - 1, k] BernoulliB[k + n]/(k + n)]; Table[T[n, k], {n, 11}, {k, 0, n - 1}]//Flatten (* Indranil Ghosh, Jul 27 2017 *) PROG (PARI) T(n, k) = denominator((-1)^n*binomial(n-1, k)*bernfrac(k+n)/(k+n)); tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 28 2017 CROSSREFS Numerators in A287703. Sequence in context: A166489 A160367 A016736 * A351456 A082185 A354130 Adjacent sequences: A287701 A287702 A287703 * A287705 A287706 A287707 KEYWORD nonn,tabl,frac AUTHOR Peter Luschny, Jun 21 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 12 14:14 EDT 2024. Contains 375851 sequences. (Running on oeis4.)