login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287704 Triangle read by rows, denominators of T(n,k) = (-1)^(n+k)*binomial(n-1,k)* Bernoulli(n+k)/ (n+k) for n>=1, 0<=k<=n-1. 1
2, 12, 1, 1, 60, 1, 120, 1, 84, 1, 1, 63, 1, 60, 1, 252, 1, 24, 1, 132, 1, 1, 40, 1, 33, 1, 5460, 1, 240, 1, 44, 1, 936, 1, 12, 1, 1, 33, 1, 585, 1, 3, 1, 1020, 1, 132, 1, 910, 1, 2, 1, 680, 1, 1596, 1, 1, 3276, 1, 1, 1, 680, 1, 1197, 1, 660, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
EXAMPLE
1: 2
2: 12, 1
3: 1, 60, 1
4: 120, 1, 84, 1
5: 1, 63, 1, 60, 1
6: 252, 1, 24, 1, 132, 1
7: 1, 40, 1, 33, 1, 5460, 1
8: 240, 1, 44, 1, 936, 1, 12, 1
9: 1, 33, 1, 585, 1, 3, 1, 1020, 1
MAPLE
T := (n, k) -> denom((-1)^(n+k)*binomial(n-1, k)*bernoulli(n+k)/(n+k)):
for n from 1 to 9 do seq(T(n, k), k=0..n-1) od;
MATHEMATICA
T[n_, k_]:=Denominator[(-1)^n*Binomial[n - 1, k] BernoulliB[k + n]/(k + n)]; Table[T[n, k], {n, 11}, {k, 0, n - 1}]//Flatten (* Indranil Ghosh, Jul 27 2017 *)
PROG
(PARI) T(n, k) = denominator((-1)^n*binomial(n-1, k)*bernfrac(k+n)/(k+n));
tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 28 2017
CROSSREFS
Numerators in A287703.
Sequence in context: A166489 A160367 A016736 * A351456 A082185 A354130
KEYWORD
nonn,tabl,frac
AUTHOR
Peter Luschny, Jun 21 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 14:14 EDT 2024. Contains 375851 sequences. (Running on oeis4.)