login
A082185
Triangle read by rows: n-th row contains concatenations of nonempty subsets of {1, 2, ..., n}, ordered first by size and then lexicographically.
6
1, 1, 2, 12, 1, 2, 3, 12, 13, 23, 123, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234, 1234, 1, 2, 3, 4, 5, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, 123, 124, 125, 134, 135, 145, 234, 235, 245, 345, 1234, 1235, 1245, 1345, 2345, 12345, 1, 2, 3, 4, 5, 6, 12, 13, 14, 15
OFFSET
1,3
REFERENCES
F. Smarandache and J. Dezert, Advances and Applications of DSmT for Information Fusion, Vol. 1, ARPress, 2004, pp. 42-46.
LINKS
Alois P. Heinz, Rows n = 1..9, flattened
J. Dezert and F. Smarandache On the generation of hyper-powersets for the DSmT, Proc. Fusion 2003 Conf., Cairns, Australia.
Florentin Smarandache, Algebraic Generalization of Venn Diagram, in Multispace & Multistructure. Neutrosophic Transdisciplinarity, NESP, 2010.
EXAMPLE
Triangle T(n,k) begins:
1;
1, 2, 12;
1, 2, 3, 12, 13, 23, 123;
1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234, 1234;
...
MAPLE
T:= n-> map(x-> parse(cat(x[])),
[seq(combinat[choose]([$1..n], i)[], i=1..n)])[]:
seq(T(n), n=1..6); # Alois P. Heinz, Jan 30 2023
CROSSREFS
Sequence in context: A016736 A287704 A351456 * A354130 A113491 A107773
KEYWORD
nonn,easy,tabf,base
AUTHOR
M. Khoshnevisan (m.khoshnevisan(AT)griffith.edu.au), May 10 2003
EXTENSIONS
More terms from David Wasserman, Aug 19 2004
STATUS
approved