

A171911


Van Eck's sequence (cf. A181391), but starting with a(1) = 1.


10



1, 0, 0, 1, 3, 0, 3, 2, 0, 3, 3, 1, 8, 0, 5, 0, 2, 9, 0, 3, 9, 3, 2, 6, 0, 6, 2, 4, 0, 4, 2, 4, 2, 2, 1, 23, 0, 8, 25, 0, 3, 19, 0, 3, 3, 1, 11, 0, 5, 34, 0, 3, 7, 0, 3, 3, 1, 11, 11, 1, 3, 5, 13, 0, 10, 0, 2, 33, 0, 3, 9, 50, 0, 4, 42, 0, 3, 7, 25, 40, 0, 5, 20, 0, 3, 8, 48, 0, 4, 15
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

After the initial value, the sequence is extended by a(n+1) = min { k > 0: a(nk) = a(n) } or 0 if no such k exists, i.e., if a(n) did not appear earlier.


LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..10001


PROG

(Python) # both Python2 and Python3
A171911_list, l = [1, 0], 0
for n in range(1, 10**4):
for m in range(n1, 1, 1):
if A171911_list[m] == l:
l = nm
break
else: # break did not occur
l = 0
A171911_list.append(l) # Chai Wah Wu, Jan 02 2015
(PARI) A171911_vec(N, a=1, i=Map())={vector(N, n, a=if(n>1, iferr(nmapget(i, a), E, 0)+mapput(i, a, n), a))} \\ M. F. Hasler, Jun 11 2019


CROSSREFS

Cf. A181391, A171912, ..., A171918 (same but starting with 0, 2, ..., 8).
Sequence in context: A298082 A085919 A105824 * A180193 A229964 A309722
Adjacent sequences: A171908 A171909 A171910 * A171912 A171913 A171914


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Oct 22 2010


EXTENSIONS

Edited by M. F. Hasler, Jun 11 2019


STATUS

approved



