login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309722
Digits of the 4-adic integer (1/3)^(1/3).
3
3, 0, 3, 2, 1, 1, 0, 1, 2, 2, 2, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 3, 2, 2, 3, 2, 3, 3, 1, 1, 2, 0, 1, 3, 0, 0, 2, 3, 2, 2, 2, 0, 0, 0, 0, 0, 3, 2, 0, 2, 0, 2, 0, 0, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 0, 2, 3, 1, 0, 0, 3, 3, 2, 3, 3, 3, 0, 3, 1, 3, 2, 3, 2, 2, 1, 2, 0, 3, 2, 0, 2, 3, 0, 0, 2, 0, 3, 3, 0
OFFSET
0,1
LINKS
Wikipedia, Hensel's Lemma.
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (3 * b(n-1)^3 - 1) mod 4^n for n > 1, then a(n) = (b(n+1) - b(n))/4^n.
PROG
(PARI) N=100; Vecrev(digits(lift((1/3+O(2^(2*N)))^(1/3)), 4), N)
(Ruby)
def A309722(n)
ary = [3]
a = 3
n.times{|i|
b = (a + 3 * (3 * a ** 3 - 1)) % (4 ** (i + 2))
ary << (b - a) / (4 ** (i + 1))
a = b
}
ary
end
p A309722(100)
CROSSREFS
Digits of the k-adic integer (1/(k-1))^(1/(k-1)): this sequence (k=4), A309723 (k=6), A309724 (k=8), A225464 (k=10).
Sequence in context: A171911 A180193 A229964 * A070298 A024938 A332715
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 14 2019
STATUS
approved