login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309722 Digits of the 4-adic integer (1/3)^(1/3). 3
3, 0, 3, 2, 1, 1, 0, 1, 2, 2, 2, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 3, 2, 2, 3, 2, 3, 3, 1, 1, 2, 0, 1, 3, 0, 0, 2, 3, 2, 2, 2, 0, 0, 0, 0, 0, 3, 2, 0, 2, 0, 2, 0, 0, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 0, 2, 3, 1, 0, 0, 3, 3, 2, 3, 3, 3, 0, 3, 1, 3, 2, 3, 2, 2, 1, 2, 0, 3, 2, 0, 2, 3, 0, 0, 2, 0, 3, 3, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

Wikipedia, Hensel's Lemma.

FORMULA

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (3 * b(n-1)^3 - 1) mod 4^n for n > 1, then a(n) = (b(n+1) - b(n))/4^n.

PROG

(PARI) N=100; Vecrev(digits(lift((1/3+O(2^(2*N)))^(1/3)), 4), N)

(Ruby)

def A309722(n)

  ary = [3]

  a = 3

  n.times{|i|

    b = (a + 3 * (3 * a ** 3 - 1)) % (4 ** (i + 2))

    ary << (b - a) / (4 ** (i + 1))

    a = b

  }

  ary

end

p A309722(100)

CROSSREFS

Digits of the k-adic integer (1/(k-1))^(1/(k-1)): this sequence (k=4), A309723 (k=6), A309724 (k=8), A225464 (k=10).

Cf. A225411, A309698.

Sequence in context: A171911 A180193 A229964 * A070298 A024938 A332715

Adjacent sequences:  A309719 A309720 A309721 * A309723 A309724 A309725

KEYWORD

nonn,base

AUTHOR

Seiichi Manyama, Aug 14 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 8 19:28 EDT 2021. Contains 343666 sequences. (Running on oeis4.)