login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180193
Triangle read by rows: T(n,k) is the number of permutations of [n] having k blocks of odd length (0<=k<=n).
2
1, 0, 1, 1, 0, 1, 0, 3, 0, 3, 2, 0, 11, 0, 11, 0, 14, 0, 53, 0, 53, 6, 0, 96, 0, 309, 0, 309, 0, 78, 0, 724, 0, 2119, 0, 2119, 24, 0, 852, 0, 6070, 0, 16687, 0, 16687, 0, 504, 0, 9300, 0, 56418, 0, 148329, 0, 148329, 120, 0, 8040, 0, 106170, 0, 577556, 0, 1468457, 0
OFFSET
0,8
COMMENTS
A block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions. For example, the permutation 5412367 has 4 blocks: 5, 4, 123, and 67.
LINKS
A. N. Myers, Counting permutations by their rigid patterns, J. Combin. Theory, Series A, Vol. 99, No. 2 (2002), pp. 345-357.
FORMULA
T(n,k) = Sum(binomial(k+j,j)*binomial((n+k+2)/2,k+j-1)*[d(k+j)+d(k+j-1)], j=0..(n-k)/2) if n and k are of the same parity; T(n,k)=0 if n and k have opposite parities (0<=k<=n).
T(n,n) = T(n,n-2) = d(n)+d(n-1) = A000255(n-1), where d(i)=A000166(i) are the derangement numbers.
T(2n+1,1) = A001564(n).
Sum(k*T(n,k),k>=0) = A180195(n).
Sum of entries in row n = n! = A000142(n).
EXAMPLE
T(3,1)=3 because we have (123), 23(1), and (3)12 (the blocks of odd length are shown between parentheses). T(4,0)=2 because we have 1234 and 3412.
Triangle starts:
1;
0,1;
1,0,1;
0,3,0,3;
2,0,11,0,11;
0,14,0,53,0,53;
MAPLE
d[ -1] := 0: d[0] := 1: for n to 50 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if `mod`(n+k, 2) = 1 then 0 else sum(binomial(k+j, j)*binomial((1/2)*n+(1/2)*k-1, k+j-1)*(d[k+j]+d[k+j-1]), j = 0 .. (1/2)*n-(1/2)*k) end if end proc; for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 09 2010
STATUS
approved