OFFSET
0,8
COMMENTS
A block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions. For example, the permutation 5412367 has 4 blocks: 5, 4, 123, and 67.
LINKS
A. N. Myers, Counting permutations by their rigid patterns, J. Combin. Theory, Series A, Vol. 99, No. 2 (2002), pp. 345-357.
FORMULA
EXAMPLE
T(3,1)=3 because we have (123), 23(1), and (3)12 (the blocks of odd length are shown between parentheses). T(4,0)=2 because we have 1234 and 3412.
Triangle starts:
1;
0,1;
1,0,1;
0,3,0,3;
2,0,11,0,11;
0,14,0,53,0,53;
MAPLE
d[ -1] := 0: d[0] := 1: for n to 50 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if `mod`(n+k, 2) = 1 then 0 else sum(binomial(k+j, j)*binomial((1/2)*n+(1/2)*k-1, k+j-1)*(d[k+j]+d[k+j-1]), j = 0 .. (1/2)*n-(1/2)*k) end if end proc; for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 09 2010
STATUS
approved