login
A168261
Triangle read by rows, A115361 * the diagonalized variant of A018819.
1
1, 1, 1, 0, 0, 2, 1, 1, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 0, 6, 1, 1, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 4, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20
OFFSET
1,6
COMMENTS
Row sums = A018819 starting with offset 1; (1, 2, 2, 4, 4, 6, 6, 10, 10,...).
Equals the eigensequence of triangle A115361.
Rightmost diagonal = A018819.
Sum of n-th row terms = rightmost term of next row.
FORMULA
Equals M*Q as infinite lower triangular matrices, where M = triangle A115361, and Q = the diagonalized variant of A018819 such that (1, 1, 2, 2, 4, 4, 6, 6,...) = rightmost diagonal with the rest zeros.
EXAMPLE
First few rows of the triangle =
1;
1, 1;
0, 0, 2;
1, 1, 0, 2;
0, 0, 0, 0, 4;
0, 0, 2, 0, 0, 4;
0, 0, 0, 0, 0 0, 6;
1, 1, 0, 2, 0, 0, 0, 6;
0, 0, 0, 0, 0, 0, 0, 0, 10;
0, 0, 0, 0, 4, 0, 0, 0, 0, 10;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14;
0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 14;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20;
0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 20;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26;
1, 1, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 26;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36;
...
CROSSREFS
Sequence in context: A097608 A331126 A362899 * A180997 A143439 A105469
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 21 2009
STATUS
approved