login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168259
Eigensequence of triangle A168258.
2
1, 2, 6, 14, 38, 96, 254, 656, 1724, 4492, 11776, 30774, 80608, 210892, 552226, 1445374, 3784308, 9906482, 25936206, 67899344, 177764618, 465387226, 1218404344, 3189806746, 8351034954, 21863248282, 57238759726, 149852900454, 392320072078, 1027106974446, 2689001192594, 7039895709776
OFFSET
1,2
COMMENTS
Eigensequence of triangle A168258, derived from the following operation: Shift down triangle A168258, so that rows begin [1; 1; 1,1; 2,2,1; ...] = triangle M. Then take lim_{n->oo} M^n, resulting in a left-shifted vector. Delete the first 1, getting (1, 2, 6, 14, 38, 96, ...) = this sequence.
a(n)/a(n-1) apparently tends to phi^2=A104457. a(19)/a(18) = 2.618104...
LINKS
Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
PROG
(PARI) T(n, k) = if(binomial(k, n-k)>0, 1, 0); \\ A101688
mat(nn) = my(ma=matrix(nn+1, nn, n, k, T(n-1, k-1)), mb=matrix(nn, nn, n, k, n>=k)); ma*mb; \\ A168258
shiftm(m, nn) = my(shm=matrix(nn+1, nn+1)); shm[1, 1]=1; for (n=1, nn, for(k=1, nn, shm[n+1, k] = m[n, k]; ); ); shm;
lista(nn) = my(m=mat(nn), shm=shiftm(m, nn), shmnn=shm^nn); vector(nn, k, shmnn[k+1, 1]); \\ Michel Marcus, Nov 19 2022
CROSSREFS
KEYWORD
eigen,nonn
AUTHOR
Gary W. Adamson, Nov 21 2009
EXTENSIONS
Edited and more terms from Michel Marcus, Nov 19 2022
STATUS
approved