login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190788
Expansion of ((x-1)*sqrt(1-4*x^2))/((x-1)*sqrt(1-4*x^2)+x).
0
1, 1, 2, 6, 14, 38, 94, 248, 628, 1638, 4190, 10872, 27940, 72316, 186260, 481488, 1241512, 3207302, 8274646, 21369496, 55148068, 142396436, 367537484, 948920560, 2449445432, 6323741404, 16324167564, 42143003504
OFFSET
0,3
FORMULA
a(n)=sum(k=1..n, sum(i=0..(n-k)/2, binomial((2*i+k-2)/2,i)*4^i*binomial(n-2*i-1,k-1))), n>0, a(0)=1.
Conjecture D-finite with recurrence: (-n+1)*a(n) +(3*n-5)*a(n-1) +2*(3*n-7)*a(n-2) +4*(-6*n+19)*a(n-3) +4*(n-3)*a(n-4) +4*(11*n-53)*a(n-5) +16*(-3*n+16)*a(n-6) +16*(n-6)*a(n-7)=0. - R. J. Mathar, Nov 28 2013
MATHEMATICA
CoefficientList[Series[((x-1)Sqrt[1-4x^2])/((x-1)Sqrt[1-4x^2]+x), {x, 0, 60}], x] (* Harvey P. Dale, May 24 2011 *)
PROG
(Maxima)
a(n):=sum(sum(binomial((2*i+k-2)/2, i)*4^i*binomial(n-2*i-1, k-1), i, 0, (n-k)/2), k, 1, n);
CROSSREFS
Sequence in context: A100067 A026597 A122112 * A168259 A275208 A000634
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 19 2011
STATUS
approved