login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190790
G.f. satisfies: A(x) = 1 + Sum_{n>=1} q^(2n-1)/(1 - q^(2n-1)) where q = x*A(x).
3
1, 1, 2, 6, 18, 58, 198, 696, 2506, 9205, 34344, 129792, 495834, 1911640, 7428444, 29064650, 114404410, 452719183, 1799994588, 7187148262, 28807364008, 115865980972, 467497031164, 1891710323324, 7675031497682, 31215088847239
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies:
* A(x) = 1 + Sum_{n>=1} q^(n*(n+1)/2)/(1 - q^n), where q = x*A(x);
* A(x) = 1 + Sum_{n>=1} q^n/(1 - q^(2n)), where q = x*A(x);
* A(x) = 1 + Sum_{n>=1} A001227(n)*x^n*A(x)^n, where A001227(n) = number of odd divisors of n.
Let D(x) = 1 + Sum_{n>=1} A001227(n)*x^n, then
* A(x) = D(x*A(x)) and D(x) = A(x/D(x));
* A(x) = (1/x)*Series_Reversion(x/D(x));
* a(n) = [x^n] D(x)^(n+1)/(n+1), the coefficient of x^n in D(x)^(n+1)/(n+1) for n>=0.
a(n) ~ c * d^n / n^(3/2), where d = 4.3154117906555438598489327064282723007551580672340735654761205324876... and c = 0.545252538971019249263783268322061859441589544238489362753993274... - Vaclav Kotesovec, Sep 28 2023
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 18*x^4 + 58*x^5 + 198*x^6 +...
Let q = x*A(x), then the g.f. A(x) satisfies the following series:
* A(x) = 1 + q/(1 - q) + q^3/(1 - q^3) + q^5/(1 - q^5) + q^7/(1 - q^7) +...
* A(x) = 1 + q/(1 - q) + q^3/(1 - q^2) + q^6/(1 - q^3) + q^10/(1 - q^4) +...
* A(x) = 1 + q/(1 - q^2) + q^2/(1 - q^4) + q^3/(1 - q^6) + q^4/(1 - q^8) +...
* A(x) = 1 + q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 +...+ A001227(n)*q^n +...
MATHEMATICA
nmax = 30; A[_] = 0; Do[A[x_] = 1 + Sum[(x*A[x])^(2*k-1)/(1 - (x*A[x])^(2*k-1)), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
(* Calculation of constant d: *) val = r /. FindRoot[{(Log[1 - r^2*s^2] + QPolyGamma[0, -1/2, r^2*s^2]) / Log[r^2*s^2] == s - 1 - 1/(1 - r*s), r*(1/(-1 + r*s)^2 + (2*r* s*(1/(-1 + r^2*s^2) + Derivative[0, 0, 1][QPolyGamma][0, -1/2, r^2*s^2]))/ Log[r^2*s^2]) == 1 + (2*(s - 1 - 1/(1 - r*s)))/(s*Log[r^2*s^2])}, {r, 1/4}, {s, 2}, WorkingPrecision -> 200]; N[ 1/Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3] (* Vaclav Kotesovec, Sep 28 2023 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, (x*A)^(2*m-1)/(1-(x*A)^(2*m-1)+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, (x*A)^(m*(m+1)/2)/(1-(x*A)^m+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, (x*A)^m/(1-(x*A)^(2*m)+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(D=1+sum(m=1, n, sumdiv(m, d, d%2)*x^m)+x*O(x^n)); polcoeff(1/x*serreverse(x/D), n)}
(PARI) {a(n)=local(D=1+sum(m=1, n, sumdiv(m, d, d%2)*x^m)+x*O(x^n)); polcoeff(D^(n+1)/(n+1), n)}
CROSSREFS
Sequence in context: A360293 A085139 A150041 * A150042 A351279 A036675
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 20 2011
STATUS
approved