login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036675
G.f. satisfies A(x) = 1 + x*A(x)^2*A(x^2).
2
1, 1, 2, 6, 18, 59, 198, 690, 2450, 8878, 32632, 121518, 457262, 1736526, 6646340, 25613086, 99298674, 387021728, 1515594560, 5960406102, 23530528512, 93216984177, 370450977206, 1476458287082, 5900150928510, 23635544130948
OFFSET
0,3
LINKS
FORMULA
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1-x^2/(1-x^2)) (continued fraction); more generally g.f. C(x/(1-x^2/(1-x^2))) where C(x) is the g.f. for the Catalan numbers (A000108). [Joerg Arndt, Mar 18 2011]
a(n) ~ c * d^n / n^(3/2), where d = 4.250770453055989899189676464071962617426..., c = 0.600960911911396921862654605015399962... . - Vaclav Kotesovec, Aug 10 2014
a(n) = T(2*n+1,1), where T(n,m) = sum(i=1..n-m, (m*binomial(m+2*i-1,i))/(m+i)*((1+(-1)^(n-m))/2)*T((n-m)/2,i)), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 18 2015
MAPLE
A := 1; f := proc(n) global A; coeff(series( 1+x*(A*subs(x=x^2, A)), x, n+1), x, n); end; for n from 1 to 50 do A := series(A+f(n)*x^n, x, n +1); od: A;
MATHEMATICA
terms = 26; A[_] = 0; Do[A[x_] = 1 + x*A[x]^2*A[x^2] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
PROG
(PARI) a(n)=local(A, m); if(n<0, 0, m=2; A=1+O(x); while(m<=n+1, m*=2; A=2/(1+sqrt(1-4*x*subst(A, x, x^2)))); polcoeff(A, n))
(Maxima)
T(n, m):=if m=n then 1 else sum((m*binomial(m+2*i-1, i))/(m+i)*((1+(-1)^(n-m))/2)*T((n-m)/2, i), i, 1, n-m);
makelist(T(2*n+1, 1), n, 0, 30); /* Vladimir Kruchinin, Mar 18 2015 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved