OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..500
FORMULA
G.f.: x^2*(1 + 1/sqrt(1 - 4*x))/(2 - 2*x - 2*x^2). - Reformulated by Georg Fischer, Apr 06 2020
Conjecture: (-n+2)*a(n) +(5*n-12)*a(n-1) +(-3*n+8)*a(n-2) +2*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jun 22 2016
a(n) ~ 2^(2*n-1) / (11*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 07 2020
EXAMPLE
a(4)=6 since the root has the distance two property for the trees uudduudd and uudududd. There are similar points at height 1 for uuududdd, uuudddud and uduuuddd. The distance two point is at height 2 for uuuudddd.
MATHEMATICA
CoefficientList[Series[x^2(1 + 1/Sqrt[1 - 4x])/(2(1 - x - x^2)), {x, 0, 26}], x] (* Robert G. Wilson v, Aug 21 2006 *)
PROG
(PARI) seq(n)={Vec(x^2*(1 + 1/sqrt(1 - 4*x + O(x^(n-1))))/(2 - 2*x - 2*x^2), -(n+1))} \\ Andrew Howroyd, Apr 06 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Louis Shapiro, Aug 25 2006
EXTENSIONS
More terms from Robert G. Wilson v, Aug 21 2006
STATUS
approved