login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121319
a(n) is the smallest number k such that k and 2^k have the same last n digits. Here k must have at least n digits (cf. A113627).
4
14, 36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 1075353432948736, 5075353432948736, 15075353432948736, 615075353432948736, 8615075353432948736, 98615075353432948736
OFFSET
1,1
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 1..80
Jon E. Schoenfield, Excel program
FORMULA
If A109405(n) has n digits, a(n) = A109405(n), otherwise a(n) = A109405(n) + 10^n. - Max Alekseyev, May 05 2007
EXAMPLE
2^14 = 16384 and 14 end with the same single digit 4, thus a(1) = 14.
MATHEMATICA
f[n_] := Block[{k = If[n == 1, 2, 10], m = 10^n}, While[ PowerMod[2, k, m] != Mod[k, m], k += 2]; k]; Do[ Print@f@n, {n, 9}] (* Robert G. Wilson v *)
PROG
(PARI) A121319(n) = { local(k, tn); tn=10^n ; forstep(k=2, 1000000000, 2, if ( k % tn == (2^k) % tn, return(k) ; ) ; ) ; return(0) ; } { for(n = 1, 13, print( A121319(n)) ; ) ; } \\ R. J. Mathar, Aug 27 2006
KEYWORD
nonn,base
AUTHOR
Tanya Khovanova, Aug 25 2006
EXTENSIONS
a(6)-a(9) from Robert G. Wilson v and Jon E. Schoenfield, Aug 26 2006
a(10) from Robert G. Wilson v, Sep 26 2006
a(11)-a(16) from Alexander Adamchuk, Jan 28 2007
a(16) corrected by Max Alekseyev, Apr 12 2007
STATUS
approved