login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121316
Unlabeled version of A055203: number of different relations between n intervals (of nonzero length) on a line, up to permutation of intervals.
3
1, 1, 7, 75, 1105, 20821, 478439, 12977815, 405909913, 14382249193, 569377926495, 24908595049347, 1193272108866953, 62128556769033261, 3493232664307133871, 210943871609662171055, 13615857409567572389361, 935523911378273899335537
OFFSET
0,3
COMMENTS
Also number of labeled multigraphs without isolated vertices and with n edges.
LINKS
A. N. Bhavale, B. N. Waphare, Basic retracts and counting of lattices, Australasian J. of Combinatorics (2020) Vol. 78, No. 1, 73-99.
FORMULA
a(n) = (1/n!)* Sum_{k=0..n} |Stirling1(n,k)|*A055203(k).
a(n) = Sum_{k>=0} binomial(k*(k-1)/2+n-1,n)/2^(k+1).
a(n) ~ n^n * 2^(n-1 + log(2)/4) / (exp(n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Mar 15 2014
a(n) = Sum_{j=0..2*n} binomial(binomial(j,2)+n-1, n) * (Sum_{i=j..2*n} (-1)^(i-j)*binomial(i,j)). - Andrew Howroyd, Feb 09 2020
MAPLE
seq(sum(binomial(k*(k-1)/2+n-1, n)/2^(k+1), k=0..infinity), n=0..20);
with(combinat): A121316:=proc(n) return (1/n!)*add(abs(stirling1(n, k))*A055203(k), k=0..n): end: seq(A121316(n), n=0..20); # Nathaniel Johnston, Apr 28 2011
MATHEMATICA
Table[Sum[Binomial[k*(k-1)/2+n-1, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 15 2014 *)
PROG
(PARI) a(n) = {sum(j=0, 2*n, binomial(binomial(j, 2)+n-1, n) * sum(i=j, 2*n, (-1)^(i-j)*binomial(i, j)))} \\ Andrew Howroyd, Feb 09 2020
CROSSREFS
Row n=2 of A330942.
Sequence in context: A243692 A258293 A127190 * A220215 A066302 A106162
KEYWORD
nonn
AUTHOR
Goran Kilibarda and Vladeta Jovovic, Aug 25 2006
STATUS
approved