OFFSET
0,3
COMMENTS
Also number of labeled multigraphs without isolated vertices and with n edges.
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..125
A. N. Bhavale, B. N. Waphare, Basic retracts and counting of lattices, Australasian J. of Combinatorics (2020) Vol. 78, No. 1, 73-99.
FORMULA
a(n) = (1/n!)* Sum_{k=0..n} |Stirling1(n,k)|*A055203(k).
a(n) = Sum_{k>=0} binomial(k*(k-1)/2+n-1,n)/2^(k+1).
a(n) ~ n^n * 2^(n-1 + log(2)/4) / (exp(n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Mar 15 2014
a(n) = Sum_{j=0..2*n} binomial(binomial(j,2)+n-1, n) * (Sum_{i=j..2*n} (-1)^(i-j)*binomial(i,j)). - Andrew Howroyd, Feb 09 2020
MAPLE
seq(sum(binomial(k*(k-1)/2+n-1, n)/2^(k+1), k=0..infinity), n=0..20);
with(combinat): A121316:=proc(n) return (1/n!)*add(abs(stirling1(n, k))*A055203(k), k=0..n): end: seq(A121316(n), n=0..20); # Nathaniel Johnston, Apr 28 2011
MATHEMATICA
Table[Sum[Binomial[k*(k-1)/2+n-1, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 15 2014 *)
PROG
(PARI) a(n) = {sum(j=0, 2*n, binomial(binomial(j, 2)+n-1, n) * sum(i=j, 2*n, (-1)^(i-j)*binomial(i, j)))} \\ Andrew Howroyd, Feb 09 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Goran Kilibarda and Vladeta Jovovic, Aug 25 2006
STATUS
approved