login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Unlabeled version of A055203: number of different relations between n intervals (of nonzero length) on a line, up to permutation of intervals.
3

%I #18 Oct 15 2020 16:34:33

%S 1,1,7,75,1105,20821,478439,12977815,405909913,14382249193,

%T 569377926495,24908595049347,1193272108866953,62128556769033261,

%U 3493232664307133871,210943871609662171055,13615857409567572389361,935523911378273899335537

%N Unlabeled version of A055203: number of different relations between n intervals (of nonzero length) on a line, up to permutation of intervals.

%C Also number of labeled multigraphs without isolated vertices and with n edges.

%H Nathaniel Johnston, <a href="/A121316/b121316.txt">Table of n, a(n) for n = 0..125</a>

%H A. N. Bhavale, B. N. Waphare, <a href="https://ajc.maths.uq.edu.au/pdf/78/ajc_v78_p073.pdf">Basic retracts and counting of lattices</a>, Australasian J. of Combinatorics (2020) Vol. 78, No. 1, 73-99.

%F a(n) = (1/n!)* Sum_{k=0..n} |Stirling1(n,k)|*A055203(k).

%F a(n) = Sum_{k>=0} binomial(k*(k-1)/2+n-1,n)/2^(k+1).

%F a(n) ~ n^n * 2^(n-1 + log(2)/4) / (exp(n) * (log(2))^(2*n+1)). - _Vaclav Kotesovec_, Mar 15 2014

%F a(n) = Sum_{j=0..2*n} binomial(binomial(j,2)+n-1, n) * (Sum_{i=j..2*n} (-1)^(i-j)*binomial(i,j)). - _Andrew Howroyd_, Feb 09 2020

%p seq(sum(binomial(k*(k-1)/2+n-1,n)/2^(k+1),k=0..infinity),n=0..20);

%p with(combinat): A121316:=proc(n) return (1/n!)*add(abs(stirling1(n,k))*A055203(k),k=0..n): end: seq(A121316(n),n=0..20); # _Nathaniel Johnston_, Apr 28 2011

%t Table[Sum[Binomial[k*(k-1)/2+n-1,n]/2^(k+1),{k,0,Infinity}],{n,0,20}] (* _Vaclav Kotesovec_, Mar 15 2014 *)

%o (PARI) a(n) = {sum(j=0, 2*n, binomial(binomial(j,2)+n-1, n) * sum(i=j, 2*n, (-1)^(i-j)*binomial(i,j)))} \\ _Andrew Howroyd_, Feb 09 2020

%Y Row n=2 of A330942.

%Y Cf. A055203, A121251, A104209.

%K nonn

%O 0,3

%A Goran Kilibarda and _Vladeta Jovovic_, Aug 25 2006