login
A064541
Numbers k such that 2^k ends in k.
16
36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 5075353432948736, 15075353432948736, 615075353432948736, 8615075353432948736, 98615075353432948736, 8098615075353432948736, 38098615075353432948736
OFFSET
1,1
COMMENTS
There is no term with 15 digits.
FORMULA
a(n+1) is a suffix of 2^a(n) formed by a nonzero digit followed by a number of zeros and a(n). E.g., a(13)=75353432948736 and 2^a(13) ends with ...15075353432948736, hence a(14)=5075353432948736. - Max Alekseyev, Apr 18 2007
Can be obtained from A109405 by removing all repeats. - Max Alekseyev, May 11 2007
EXAMPLE
2^36 = 68719476736 which ends in 36.
MATHEMATICA
a[1] = 36; a[n_] := a[n] = For[ida = IntegerDigits[a[n-1]]; k = 1, True, k++, idk = IntegerDigits[k]; pm = PowerMod[2, an = FromDigits[Join[idk, ida]], 10^IntegerLength[an]]; If[pm == an, Return[an]]]; Array[a, 20] (* Jean-François Alcover, Feb 15 2018 *)
CROSSREFS
The leading digits are listed in A064540.
Digits read backwards form A133612.
Sequence in context: A138832 A223998 A109405 * A058001 A004329 A089909
KEYWORD
base,nonn,nice
AUTHOR
Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 08 2001
STATUS
approved