login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121323
a(n) = (2*n+1)*a(n-1) - a(n-2) starting a(0)=0, a(1)=1.
5
0, 1, 5, 34, 301, 3277, 42300, 631223, 10688491, 202450106, 4240763735, 97335115799, 2429137131240, 65489367427681, 1896762518271509, 58734148698989098, 1936330144548368725, 67712820910493916277, 2503438043543726533524, 97566370877294840891159
OFFSET
0,3
LINKS
S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.
FORMULA
2*a(n)= Pi*BesselJ_{3/2 + n}(1) * BesselY_{3/2}(1) - Pi*BesselJ_{3/2}(1) *BesselY_{3/2 + n}(1).
E.g.f.: ((sqrt(1-2*x)+1)*sin(1-sqrt(1-2*x))+(sqrt(1-2*x)-1)*cos(1-sqrt(1-2*x)))/(1-2*x)^(3/2). - Vaclav Kotesovec, Oct 21 2012
a(n) ~ (sin(1)-cos(1))*n^(n+1)*2^(n+3/2)/exp(n). - Vaclav Kotesovec, Oct 21 2012
a(n) = Sum_{k = 0..floor((n-1)/2)} (-1)^k*2^(n-2*k-1)*(n-2*k-1)!*binomial(n-k-1,k)*binomial(n-k+1/2,k+3/2), cf. A058798. - Peter Bala, Aug 01 2013
a(n) = 2^(n+1)*Gamma(n+3/2)*hypergeometric([1/2-n/2, 1-n/2], [5/2, -n-1/2, 1-n], -1)/(3*sqrt(Pi)) for n >= 2. - Peter Luschny, Sep 10 2014
MAPLE
A121323 := proc(n)
BesselJ(3/2+n, 1)*BesselY(3/2, 1)-BesselJ(3/2, 1)*BesselY(3/2+n, 1) ;
simplify(Pi*%/2 );
end proc: # R. J. Mathar, Oct 13 2012
MATHEMATICA
f[n_Integer] = Module[{a}, a[n] /. RSolve[{a[n] == (2*n + 1)*a[n - 1] - a[n - 2], a[0] == 0, a[1] == 1}, a[n], n][[1]] // FullSimplify] Rationalize[N[Table[f[n], {n, 0, 25}], 100], 0]
CoefficientList[Series[((Sqrt[1-2*x]+1)*Sin[1-Sqrt[1-2*x]]+(Sqrt[1-2*x]-1)*Cos[1-Sqrt[1-2*x]])/(1-2*x)^(3/2), {x, 0, 20}], x]*Range[0, 20]! (* Vaclav Kotesovec, Oct 21 2012 *)
nxt[{n_, a_, b_}]:={n+1, b, (2n+3)b-a}; NestList[nxt, {1, 0, 1}, 20][[All, 2]] (* Harvey P. Dale, Sep 04 2021 *)
PROG
(Sage)
def A121323(n):
if n < 2: return n
return 2^(n+1)*gamma(n+3/2)*hypergeometric([1/2-n/2, 1-n/2], [5/2, -n-1/2, 1-n], -1) /(3*sqrt(pi))
[round(A121323(n).n(100)) for n in (0..19)] # Peter Luschny, Sep 10 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula and Bob Hanlon (hanlonr(AT)cox.net), Sep 05 2006
STATUS
approved