login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355258
a(n) = n! * [x^n] (1 - x)*log((1 - x)/(1 - 2*x)).
1
0, 1, 1, 5, 34, 294, 3096, 38520, 553680, 9036720, 165191040, 3344664960, 74321452800, 1798531257600, 47088252288000, 1326311841254400, 39993302622873600, 1285497518393088000, 43878291581988864000, 1585102883250991104000, 60420385100090695680000, 2423528644964637450240000
OFFSET
0,4
FORMULA
For n>=2, a(n) = (1 + 2^(n-1) * (n-2)) * (n-2)!. - Vaclav Kotesovec, Jul 01 2022
For n>=2, a(n) = n!*Sum_{k, 0, n - 2} (binomial(n - 2, k)/(k + 2)). - Detlef Meya, Apr 12 2024
MAPLE
egf := (1 - x)*log((1 - x)/(1 - 2*x)): ser := series(egf, x, 23):
seq(n!*coeff(ser, x, n), n = 0..21);
# Alternative:
a := n -> local k; n! * ifelse(n < 2, n, (2^(n - 1)*(n - 2) + 1) / (n*(n - 1))):
seq(a(n), n = 0..21); # Peter Luschny, Apr 12 2024
MATHEMATICA
a[0]:=0; a[1]:=1; a[n_]:=n!*Sum[Binomial[n-2, k]/(k+2), {k, 0, n-2}];
Flatten[Table[a[n], {n, 0, 21}]] (* Detlef Meya, Apr 12 2024 *)
CROSSREFS
Cf. A355257.
Sequence in context: A284864 A208677 A259906 * A334066 A330649 A121323
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 01 2022
STATUS
approved