login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n! * [x^n] (1 - x)*log((1 - x)/(1 - 2*x)).
1

%I #10 Apr 12 2024 14:01:48

%S 0,1,1,5,34,294,3096,38520,553680,9036720,165191040,3344664960,

%T 74321452800,1798531257600,47088252288000,1326311841254400,

%U 39993302622873600,1285497518393088000,43878291581988864000,1585102883250991104000,60420385100090695680000,2423528644964637450240000

%N a(n) = n! * [x^n] (1 - x)*log((1 - x)/(1 - 2*x)).

%F For n>=2, a(n) = (1 + 2^(n-1) * (n-2)) * (n-2)!. - _Vaclav Kotesovec_, Jul 01 2022

%F For n>=2, a(n) = n!*Sum_{k, 0, n - 2} (binomial(n - 2, k)/(k + 2)). - _Detlef Meya_, Apr 12 2024

%p egf := (1 - x)*log((1 - x)/(1 - 2*x)): ser := series(egf, x, 23):

%p seq(n!*coeff(ser, x, n), n = 0..21);

%p # Alternative:

%p a := n -> local k; n! * ifelse(n < 2, n, (2^(n - 1)*(n - 2) + 1) / (n*(n - 1))):

%p seq(a(n), n = 0..21); # _Peter Luschny_, Apr 12 2024

%t a[0]:=0; a[1]:=1; a[n_]:=n!*Sum[Binomial[n-2,k]/(k+2), {k,0,n-2}];

%t Flatten[Table[a[n],{n,0,21}]] (* _Detlef Meya_, Apr 12 2024 *)

%Y Cf. A355257.

%K nonn

%O 0,4

%A _Peter Luschny_, Jul 01 2022