OFFSET
1,2
COMMENTS
Related identity: Sum_{n=-oo..+oo} x^n*(y - x^n)^n = 0, which holds formally for all y.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..300
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 3)^(n+1).
(2) 1/x = Sum_{n=-oo..+oo} A(x)^(2*n) * (A(x)^n - 3)^n.
(3) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 + 3*A(x)^(n+1))^n.
(4) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 - 3*A(x)^(n+1))^(n+1).
(5) A(B(x)) = x where B(x) = 1/( Sum_{n=-oo..+oo} x^n * (x^n + 3)^(n+1) ).
EXAMPLE
G.f.: A(x) = x + 5*x^2 + 34*x^3 + 290*x^4 + 2820*x^5 + 29629*x^6 + 327301*x^7 + 3744868*x^8 + 43981858*x^9 + 527126689*x^10 + ...
SPECIFIC VALUES.
A(t) = 1/7 at t = 0.069769772400266469707360138034033927488705716660080...
where t = 1/Sum_{n=-oo..+oo} (1 + 3*7^(n-1))^n / 7^(n^2-1).
A(t) = 1/8 at t = 0.067295105779482404156544832668824160420208234924667...
where t = 1/Sum_{n=-oo..+oo} (1 + 3*8^(n-1))^n / 8^(n^2-1).
A(t) = 1/9 at t = 0.064327556053208007320009998534415581932268509899202...
where t = 1/Sum_{n=-oo..+oo} (1 + 3*9^(n-1))^n / 9^(n^2-1).
A(t) = 1/10 at t = 0.06126924119589872239866986020862532219839002819792...
where t = 1/Sum_{n=-oo..+oo} (1 + 3*10^(n-1))^n / 10^(n^2-1).
A(1/15) = 0.12166176397390884847529063617720403039492284665035...
A(1/16) = 0.10420546336336096378642246758350885785023968035181...
A(1/20) = 0.07053009254165709187694647754531300907207762301254...
PROG
(PARI) {a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m + 3)^(m+1) ), #V-3); ); polcoef(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 20 2024
STATUS
approved