login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379199
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n - 1)^(n+1).
7
1, 1, 2, 2, 4, 9, 45, 164, 546, 1493, 3944, 10588, 32997, 112945, 396404, 1330461, 4265180, 13292275, 41778612, 135378928, 452828655, 1534394542, 5175561385, 17246318586, 56998526633, 188492707958, 628391304843, 2115131897264, 7162685531894, 24280930956521, 82152859633099
OFFSET
1,3
COMMENTS
Related identity: Sum_{n=-oo..+oo} x^n*(y - x^n)^n = 0, which holds formally for all y.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n - 1)^(n+1).
(2) 1/x = Sum_{n=-oo..+oo} A(x)^(2*n) * (A(x)^n + 1)^n.
(3) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 + A(x)^(n+1))^(n+1).
(4) A(x) = x * Sum_{n=-oo..+oo, n <> -1} A(x)^(n^2) / (1 - A(x)^(n+1))^n.
(5) A(B(x)) = x where B(x) = 1/( Sum_{n=-oo..+oo} x^n * (x^n - 1)^(n+1) ).
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 9*x^6 + 45*x^7 + 164*x^8 + 546*x^9 + 1493*x^10 + 3944*x^11 + 10588*x^12 + ...
SPECIFIC VALUES.
A(t) = 1/2 at t = 0.28045847462385815185359630099816126187110099265378...
where t = 1/Sum_{n=-oo..+oo} (-1)^n * (2^(n-1) - 1)^n / 2^(n^2-1).
A(t) = 1/3 at t = 0.23482705460970305955617199360925350115096428519729...
where t = 1/Sum_{n=-oo..+oo} (-1)^n * (3^(n-1) - 1)^n / 3^(n^2-1).
A(t) = 1/4 at t = 0.19291797602834900465339136778069433360676297133766...
where t = 1/Sum_{n=-oo..+oo} (-1)^n * (4^(n-1) - 1)^n / 4^(n^2-1).
A(1/4) = 0.37094847513809700088242935848658292140487254454012...
A(1/5) = 0.26269124124750053890427847522296583687631694884657...
A(1/6) = 0.20631303406093749454201994379654348907240460444958...
A(1/7) = 0.17034902087146833005156413354158308643804109633470...
A(1/8) = 0.14521334319041207588863463072178319621820854479438...
PROG
(PARI) {a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V);
V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m - 1)^(m+1) ), #V-3); ); polcoef(A, n)}
for(n=1, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 20 2024
STATUS
approved