login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296386
T(n,k)=Number of nXk 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 1 or 2 neighboring 1s.
8
1, 2, 2, 4, 10, 4, 7, 28, 28, 7, 12, 86, 127, 86, 12, 21, 279, 641, 641, 279, 21, 37, 869, 3237, 5389, 3237, 869, 37, 65, 2728, 16248, 46786, 46786, 16248, 2728, 65, 114, 8596, 81661, 396806, 684894, 396806, 81661, 8596, 114, 200, 27004, 410199, 3372222
OFFSET
1,2
COMMENTS
Table starts
...1.....2.......4.........7..........12............21..............37
...2....10......28........86.........279...........869............2728
...4....28.....127.......641........3237.........16248...........81661
...7....86.....641......5389.......46786........396806.........3372222
..12...279....3237.....46786......684894.......9703136.......138882856
..21...869...16248....396806.....9703136.....229596763......5498685275
..37..2728...81661...3372222...138882856....5498685275....221204933878
..65..8596..410199..28724880..1988460073..131626644289...8887761158698
.114.27004.2061212.244493344.28434977556.3147315906687.356576134627608
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=2: a(n) = 3*a(n-1) -a(n-2) +6*a(n-3) -6*a(n-4) +6*a(n-5) -5*a(n-6) +3*a(n-7) -a(n-8)
k=3: [order 16]
k=4: [order 40]
k=5: [order 92]
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..0..0..0. .1..0..0..1. .0..1..0..1. .0..0..0..1
..0..0..0..0. .0..0..0..1. .1..1..0..1. .1..0..0..1. .0..1..1..0
..0..0..1..0. .0..0..0..1. .0..0..0..0. .1..1..0..0. .1..0..0..0
..0..1..0..1. .1..0..0..0. .0..1..1..0. .0..0..1..1. .1..0..0..0
..0..0..1..0. .1..1..0..0. .1..0..1..1. .0..0..0..0. .1..0..0..0
CROSSREFS
Column 1 is A005251(n+2).
Sequence in context: A379199 A121623 A267347 * A296643 A295040 A295531
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 11 2017
STATUS
approved