login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295531
T(n,k)=Number of nXk 0..1 arrays with each 1 horizontally or vertically adjacent to 1, 2 or 4 1s.
8
1, 2, 2, 4, 10, 4, 7, 29, 29, 7, 12, 87, 147, 87, 12, 21, 280, 774, 774, 280, 21, 37, 876, 4080, 7071, 4080, 876, 37, 65, 2735, 21489, 64189, 64189, 21489, 2735, 65, 114, 8583, 113466, 588529, 1012315, 588529, 113466, 8583, 114, 200, 26900, 598374, 5400933
OFFSET
1,2
COMMENTS
Table starts
...1.....2.......4.........7..........12............21...............37
...2....10......29........87.........280...........876.............2735
...4....29.....147.......774........4080.........21489...........113466
...7....87.....774......7071.......64189........588529..........5400933
..12...280....4080.....64189.....1012315......16031147........253594307
..21...876...21489....588529....16031147.....437241277......11938414614
..37..2735..113466...5400933...253594307...11938414614.....563330031268
..65..8583..598374..49414072..4003959566..325438086413...26515589323171
.114.26900.3155426.452274232.63279327977.8875686431050.1248681784524804
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=2: a(n) = 2*a(n-1) +2*a(n-2) +5*a(n-3) -a(n-5) -a(n-6)
k=3: [order 18]
k=4: [order 45]
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .1..1..0..1. .0..0..1..1. .1..1..1..0. .0..1..1..0
..0..1..0..1. .1..0..0..1. .0..0..0..1. .0..0..0..1. .0..0..0..0
..1..1..0..0. .0..1..1..0. .1..0..0..1. .1..1..0..1. .1..1..0..0
..0..0..1..1. .1..1..1..0. .1..0..0..0. .1..0..0..1. .0..1..0..1
..0..0..1..1. .1..1..0..0. .0..1..1..0. .1..1..1..0. .0..1..1..1
CROSSREFS
Column 1 is A005251(n+2).
Sequence in context: A296386 A296643 A295040 * A220259 A220323 A295416
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 23 2017
STATUS
approved