The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295533 G.f. A(x) satisfies: A(x) = 1 + x*A(x)^3 - x^2/A(x)^7. 1
 1, 1, 2, 16, 47, 339, 1166, 8976, 35651, 278278, 1212177, 9302196, 43167236, 325489466, 1589818896, 11803540132, 60156687345, 440114954611, 2323481492945, 16768350745596, 91184229198927, 650047467387705, 3625017748598077, 25563565222047060, 145663567184376470, 1017461783465817794, 5906152744555574559, 40912038149899432252, 241322973993725872166 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Note that G(x) such that G(x) = 1 + x*G(x)^3 - x^2/G(x)^8 has negative coefficients. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..1000 FORMULA G.f. A(x) satisfies: x^2 = A(x)^7 - A(x)^8 + x*A(x)^10. EXAMPLE G.f. A(x) = 1 + x + 2*x^2 + 16*x^3 + 47*x^4 + 339*x^5 + 1166*x^6 + 8976*x^7 + 35651*x^8 + 278278*x^9 + 1212177*x^10 + 9302196*x^11 + 43167236*x^12 + 325489466*x^13 + 1589818896*x^14 + 11803540132*x^15 +... such that A(x) = 1 + x*A(x)^3 - x^2/A(x)^7. RELATED SERIES. A(x)^3 = 1 + 3*x + 9*x^2 + 61*x^3 + 255*x^4 + 1551*x^5 + 7205*x^6 + 45045*x^7 + 228150*x^8 + 1461265*x^9 + 7819911*x^10 +... 1/A(x)^7 = 1 - 7*x + 14*x^2 - 84*x^3 + 385*x^4 - 1771*x^5 + 9394*x^6 - 50128*x^7 + 249088*x^8 - 1482285*x^9 + 7364203*x^10 +... A(x)^7 = 1 + 7*x + 35*x^2 + 231*x^3 + 1330*x^4 + 8092*x^5 + 46956*x^6 + 284544*x^7 + 1684221*x^8 + 10313380*x^9 + 62148394*x^10 +... A(x)^8 = 1 + 8*x + 44*x^2 + 296*x^3 + 1790*x^4 + 11112*x^5 + 66588*x^6 + 408824*x^7 + 2472261*x^8 + 15260520*x^9 + 93365184*x^10 +... A(x)^10 = 1 + 10*x + 65*x^2 + 460*x^3 + 3020*x^4 + 19632*x^5 + 124280*x^6 + 788040*x^7 + 4947140*x^8 + 31216790*x^9 + 196150240*x^10 +... where x^2 = A(x)^7 - A(x)^8 + x*A(x)^10. PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A = 1 + x*A^3 - x^2/A^7 +x*O(x^n)); polcoeff(G=A, n)} for(n=0, 40, print1(a(n), ", ")) CROSSREFS Sequence in context: A254855 A181340 A275032 * A220173 A220801 A220250 Adjacent sequences: A295530 A295531 A295532 * A295534 A295535 A295536 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 23 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 10:39 EST 2022. Contains 358411 sequences. (Running on oeis4.)