login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295533 G.f. A(x) satisfies: A(x) = 1 + x*A(x)^3 - x^2/A(x)^7. 1
1, 1, 2, 16, 47, 339, 1166, 8976, 35651, 278278, 1212177, 9302196, 43167236, 325489466, 1589818896, 11803540132, 60156687345, 440114954611, 2323481492945, 16768350745596, 91184229198927, 650047467387705, 3625017748598077, 25563565222047060, 145663567184376470, 1017461783465817794, 5906152744555574559, 40912038149899432252, 241322973993725872166 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Note that G(x) such that G(x) = 1 + x*G(x)^3 - x^2/G(x)^8 has negative coefficients.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..1000

FORMULA

G.f. A(x) satisfies: x^2 = A(x)^7 - A(x)^8 + x*A(x)^10.

EXAMPLE

G.f. A(x) = 1 + x + 2*x^2 + 16*x^3 + 47*x^4 + 339*x^5 + 1166*x^6 + 8976*x^7 + 35651*x^8 + 278278*x^9 + 1212177*x^10 + 9302196*x^11 + 43167236*x^12 + 325489466*x^13 + 1589818896*x^14 + 11803540132*x^15 +...

such that A(x) = 1 + x*A(x)^3 - x^2/A(x)^7.

RELATED SERIES.

A(x)^3 = 1 + 3*x + 9*x^2 + 61*x^3 + 255*x^4 + 1551*x^5 + 7205*x^6 + 45045*x^7 + 228150*x^8 + 1461265*x^9 + 7819911*x^10 +...

1/A(x)^7 = 1 - 7*x + 14*x^2 - 84*x^3 + 385*x^4 - 1771*x^5 + 9394*x^6 - 50128*x^7 + 249088*x^8 - 1482285*x^9 + 7364203*x^10 +...

A(x)^7 = 1 + 7*x + 35*x^2 + 231*x^3 + 1330*x^4 + 8092*x^5 + 46956*x^6 + 284544*x^7 + 1684221*x^8 + 10313380*x^9 + 62148394*x^10 +...

A(x)^8 = 1 + 8*x + 44*x^2 + 296*x^3 + 1790*x^4 + 11112*x^5 + 66588*x^6 + 408824*x^7 + 2472261*x^8 + 15260520*x^9 + 93365184*x^10 +...

A(x)^10 = 1 + 10*x + 65*x^2 + 460*x^3 + 3020*x^4 + 19632*x^5 + 124280*x^6 + 788040*x^7 + 4947140*x^8 + 31216790*x^9 + 196150240*x^10 +...

where x^2 = A(x)^7 - A(x)^8 + x*A(x)^10.

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A = 1 + x*A^3 - x^2/A^7 +x*O(x^n)); polcoeff(G=A, n)}

for(n=0, 40, print1(a(n), ", "))

CROSSREFS

Sequence in context: A254855 A181340 A275032 * A220173 A220801 A220250

Adjacent sequences: A295530 A295531 A295532 * A295534 A295535 A295536

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 10:39 EST 2022. Contains 358411 sequences. (Running on oeis4.)