The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295535 G.f. A(x) satisfies: A(x) = 1 + x*A(x)^5 - x^2/A(x)^19. 1
 1, 1, 4, 49, 221, 3111, 17110, 286578, 1784529, 29714413, 193118947, 3253370410, 22144312913, 376516950886, 2659177494183, 45125258300214, 328077052846719, 5547886336336596, 41395900427450752, 696487627072615303, 5318129715505774090, 88895036913883332534, 693010823211937855758, 11500480362344463647316, 91380901216880290639953, 1504829325697181753357643, 12169760738275049654025420 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Note that G(x) such that G(x) = 1 + x*G(x)^5 - x^2/G(x)^20 has negative coefficients. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..500 FORMULA G.f. A(x) satisfies: x^2 = A(x)^19 - A(x)^20 + x*A(x)^24. EXAMPLE G.f. A(x) = 1 + x + 4*x^2 + 49*x^3 + 221*x^4 + 3111*x^5 + 17110*x^6 + 286578*x^7 + 1784529*x^8 + 29714413*x^9 + 193118947*x^10 + 3253370410*x^11 + 22144312913*x^12 + 376516950886*x^13 + 2659177494183*x^14 + 45125258300214*x^15 +... such that A(x) = 1 + x*A(x)^5 - x^2/A(x)^19. RELATED SERIES. A(x)^5 = 1 + 5*x + 30*x^2 + 335*x^3 + 2370*x^4 + 25926*x^5 + 209970*x^6 + 2500335*x^7 + 22105350*x^8 + 268963090*x^9 + 2469780029*x^10 +... 1/A(x)^19 = 1 - 19*x + 114*x^2 - 741*x^3 + 8816*x^4 - 76608*x^5 + 715806*x^6 - 7609063*x^7 + 75844143*x^8 - 783590381*x^9 + 8287390987*x^10 +... A(x)^19 = 1 + 19*x + 247*x^2 + 3268*x^3 + 39197*x^4 + 464322*x^5 + 5337442*x^6 + 61643904*x^7 + 703546554*x^8 + 8087101233*x^9 + 92320933272*x^10 +... A(x)^20 = 1 + 20*x + 270*x^2 + 3640*x^3 + 44605*x^4 + 536004*x^5 + 6249490*x^6 + 72861600*x^7 + 839576970*x^8 + 9713635800*x^9 + 111672521472*x^10 +... A(x)^24 = 1 + 24*x + 372*x^2 + 5408*x^3 + 71682*x^4 + 912048*x^5 + 11217696*x^6 + 136030416*x^7 + 1626534567*x^8 + 19351588200*x^9 + 228642682668*x^10 +... where x^2 = A(x)^19 - A(x)^20 + x*A(x)^24. PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A = 1 + x*A^5 - x^2/A^19 +x*O(x^n)); polcoeff(G=A, n)} for(n=0, 40, print1(a(n), ", ")) CROSSREFS Sequence in context: A041065 A166838 A166826 * A078187 A100256 A163944 Adjacent sequences: A295532 A295533 A295534 * A295536 A295537 A295538 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 23 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 06:20 EDT 2024. Contains 372848 sequences. (Running on oeis4.)