The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295535 G.f. A(x) satisfies: A(x) = 1 + x*A(x)^5 - x^2/A(x)^19. 1
1, 1, 4, 49, 221, 3111, 17110, 286578, 1784529, 29714413, 193118947, 3253370410, 22144312913, 376516950886, 2659177494183, 45125258300214, 328077052846719, 5547886336336596, 41395900427450752, 696487627072615303, 5318129715505774090, 88895036913883332534, 693010823211937855758, 11500480362344463647316, 91380901216880290639953, 1504829325697181753357643, 12169760738275049654025420 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Note that G(x) such that G(x) = 1 + x*G(x)^5 - x^2/G(x)^20 has negative coefficients.
LINKS
FORMULA
G.f. A(x) satisfies: x^2 = A(x)^19 - A(x)^20 + x*A(x)^24.
EXAMPLE
G.f. A(x) = 1 + x + 4*x^2 + 49*x^3 + 221*x^4 + 3111*x^5 + 17110*x^6 + 286578*x^7 + 1784529*x^8 + 29714413*x^9 + 193118947*x^10 + 3253370410*x^11 + 22144312913*x^12 + 376516950886*x^13 + 2659177494183*x^14 + 45125258300214*x^15 +...
such that A(x) = 1 + x*A(x)^5 - x^2/A(x)^19.
RELATED SERIES.
A(x)^5 = 1 + 5*x + 30*x^2 + 335*x^3 + 2370*x^4 + 25926*x^5 + 209970*x^6 + 2500335*x^7 + 22105350*x^8 + 268963090*x^9 + 2469780029*x^10 +...
1/A(x)^19 = 1 - 19*x + 114*x^2 - 741*x^3 + 8816*x^4 - 76608*x^5 + 715806*x^6 - 7609063*x^7 + 75844143*x^8 - 783590381*x^9 + 8287390987*x^10 +...
A(x)^19 = 1 + 19*x + 247*x^2 + 3268*x^3 + 39197*x^4 + 464322*x^5 + 5337442*x^6 + 61643904*x^7 + 703546554*x^8 + 8087101233*x^9 + 92320933272*x^10 +...
A(x)^20 = 1 + 20*x + 270*x^2 + 3640*x^3 + 44605*x^4 + 536004*x^5 + 6249490*x^6 + 72861600*x^7 + 839576970*x^8 + 9713635800*x^9 + 111672521472*x^10 +...
A(x)^24 = 1 + 24*x + 372*x^2 + 5408*x^3 + 71682*x^4 + 912048*x^5 + 11217696*x^6 + 136030416*x^7 + 1626534567*x^8 + 19351588200*x^9 + 228642682668*x^10 +...
where x^2 = A(x)^19 - A(x)^20 + x*A(x)^24.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A = 1 + x*A^5 - x^2/A^19 +x*O(x^n)); polcoeff(G=A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A041065 A166838 A166826 * A078187 A100256 A163944
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 23 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 06:20 EDT 2024. Contains 372848 sequences. (Running on oeis4.)