The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295537 G.f. A(x) satisfies A(x)^2 = 1 + x + x*A(x)^7. 8
1, 1, 3, 18, 121, 896, 7028, 57406, 483080, 4159169, 36462855, 324391132, 2921210383, 26576350332, 243901358678, 2255283941595, 20991223674553, 196508265126327, 1849038158249933, 17478100523106657, 165891345107764059, 1580380321767062796, 15106335141526197636, 144839560162346664092, 1392621873057558622860, 13424503737125805253734 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Terms appear to equal A011792, apart from offset and an initial 1.
Note that the function G(x) = 1 + x*G(x)^3 (g.f. of A001764) also satisfies the condition: G(x) = 1/G(-x*G(x)^5).
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 + Series_Reversion( x/(1 + 3*x + 9*x^2 + 13*x^3 + 11*x^4 + 5*x^5 + x^6) ).
(2) F(A(x)) = x such that F(x) = -(1 - x^2)/(1 + x^7).
(3) A(x) = 1 / A(-x*A(x)^5).
a(n) ~ sqrt((1 + s^7)/(5*Pi)) / (2*n^(3/2)*r^(n - 1/2)), where r = 0.09760952485001949704447959455483068408354114893087... and s = 1.239618221385127629837391742046923301758368685253... are real roots of the system of equations 1 + r + r*s^7 = s^2, 7*r*s^5 = 2. - Vaclav Kotesovec, Nov 28 2017
From Seiichi Manyama, Apr 04 2024: (Start)
G.f. A(x) satisfies A(x) = 1 + x * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4 - A(x)^5 + A(x)^6).
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(7*k/2+1/2,n)/(7*k+1). (End)
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 121*x^4 + 896*x^5 + 7028*x^6 + 57406*x^7 + 483080*x^8 + 4159169*x^9 + 36462855*x^10 + 324391132*x^11 + 2921210383*x^12 + 26576350332*x^13 + 243901358678*x^14 + 2255283941595*x^15 + ...
such that A(x)^2 = 1+x + x*A(x)^7.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 7*x^2 + 42*x^3 + 287*x^4 + 2142*x^5 + 16898*x^6 + 138600*x^7 + 1170037*x^8 + 10098774*x^9 + 88712736*x^10 + ...
A(x)^7 = 1 + 7*x + 42*x^2 + 287*x^3 + 2142*x^4 + 16898*x^5 + 138600*x^6 + 1170037*x^7 + 10098774*x^8 + 88712736*x^9 + ...
A(-x*A(x)^5) = 1 - x - 2*x^2 - 13*x^3 - 84*x^4 - 616*x^5 - 4788*x^6 - 38865*x^7 - 325489*x^8 - 2791845*x^9 - 24401730*x^10 + ...
which equals 1/A(x).
MAPLE
a:= n-> coeff(series(RootOf(x*_Z^6-x*_Z^5+x*_Z^4-x*_Z^3
+x*_Z^2-(1+x)*_Z+1+x), x, n+1), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 06 2017
MATHEMATICA
m = 26; A[_] = 0;
Do[A[x_] = Sqrt[1 + x + x A[x]^7] + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 02 2019 *)
PROG
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = sqrt(1+x + x*A^7 +x*O(x^n)) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) A295537(N=20)=Vec(serreverse('x/Ser(Polrev([1, 3, 9, 13, 11, 5, 1]), , N))+1) \\ Yields a vector with N terms. To compute only a(n) use polcoeff(..., n) instead of Vec(), and N = n+1. - M. F. Hasler, Mar 16 2018
CROSSREFS
Sequence in context: A109714 A118348 A011792 * A183145 A127188 A355048
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)