login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295537
G.f. A(x) satisfies A(x)^2 = 1 + x + x*A(x)^7.
8
1, 1, 3, 18, 121, 896, 7028, 57406, 483080, 4159169, 36462855, 324391132, 2921210383, 26576350332, 243901358678, 2255283941595, 20991223674553, 196508265126327, 1849038158249933, 17478100523106657, 165891345107764059, 1580380321767062796, 15106335141526197636, 144839560162346664092, 1392621873057558622860, 13424503737125805253734
OFFSET
0,3
COMMENTS
Terms appear to equal A011792, apart from offset and an initial 1.
Note that the function G(x) = 1 + x*G(x)^3 (g.f. of A001764) also satisfies the condition: G(x) = 1/G(-x*G(x)^5).
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 + Series_Reversion( x/(1 + 3*x + 9*x^2 + 13*x^3 + 11*x^4 + 5*x^5 + x^6) ).
(2) F(A(x)) = x such that F(x) = -(1 - x^2)/(1 + x^7).
(3) A(x) = 1 / A(-x*A(x)^5).
a(n) ~ sqrt((1 + s^7)/(5*Pi)) / (2*n^(3/2)*r^(n - 1/2)), where r = 0.09760952485001949704447959455483068408354114893087... and s = 1.239618221385127629837391742046923301758368685253... are real roots of the system of equations 1 + r + r*s^7 = s^2, 7*r*s^5 = 2. - Vaclav Kotesovec, Nov 28 2017
From Seiichi Manyama, Apr 04 2024: (Start)
G.f. A(x) satisfies A(x) = 1 + x * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4 - A(x)^5 + A(x)^6).
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(7*k/2+1/2,n)/(7*k+1). (End)
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 121*x^4 + 896*x^5 + 7028*x^6 + 57406*x^7 + 483080*x^8 + 4159169*x^9 + 36462855*x^10 + 324391132*x^11 + 2921210383*x^12 + 26576350332*x^13 + 243901358678*x^14 + 2255283941595*x^15 + ...
such that A(x)^2 = 1+x + x*A(x)^7.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 7*x^2 + 42*x^3 + 287*x^4 + 2142*x^5 + 16898*x^6 + 138600*x^7 + 1170037*x^8 + 10098774*x^9 + 88712736*x^10 + ...
A(x)^7 = 1 + 7*x + 42*x^2 + 287*x^3 + 2142*x^4 + 16898*x^5 + 138600*x^6 + 1170037*x^7 + 10098774*x^8 + 88712736*x^9 + ...
A(-x*A(x)^5) = 1 - x - 2*x^2 - 13*x^3 - 84*x^4 - 616*x^5 - 4788*x^6 - 38865*x^7 - 325489*x^8 - 2791845*x^9 - 24401730*x^10 + ...
which equals 1/A(x).
MAPLE
a:= n-> coeff(series(RootOf(x*_Z^6-x*_Z^5+x*_Z^4-x*_Z^3
+x*_Z^2-(1+x)*_Z+1+x), x, n+1), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 06 2017
MATHEMATICA
m = 26; A[_] = 0;
Do[A[x_] = Sqrt[1 + x + x A[x]^7] + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 02 2019 *)
PROG
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = sqrt(1+x + x*A^7 +x*O(x^n)) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) A295537(N=20)=Vec(serreverse('x/Ser(Polrev([1, 3, 9, 13, 11, 5, 1]), , N))+1) \\ Yields a vector with N terms. To compute only a(n) use polcoeff(..., n) instead of Vec(), and N = n+1. - M. F. Hasler, Mar 16 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2017
STATUS
approved