OFFSET
6,1
COMMENTS
Orthoplex polyominoes are connected sets of cells of regular tilings with Schläfli symbols {}, {4}, {3,4}, {3,3,4}, {3,3,3,4}, etc. These are tilings of regular orthoplexes projected on their circumspheres. Orthoplex polyominoes are equivalent to multidimensional polyominoes that do not extend more than two units along any axis, i.e., fit within a 2^d cube. For unoriented polyominoes, chiral pairs are counted as one.
LINKS
Robert A. Russell, Table of n, a(n) for n = 6..100
Robert A. Russell, Trunk Generating Functions
FORMULA
G.f.: (14B(x}^6 + 3B(x}^7 + 6B(x}^4B(x^2} + 6B(x}^5B(x^2} + 18B(x}^2B(x^2}^2 + 3B(x}^3B(x^2}^2 + 26B(x^2}^3 + 6 B(x}B(x^2}(B(x^2}^2 + B(x^4}) + 4B(x^3}^2 + 4B(x^6}) / 24 + B(x}^3 (38B(x}^4 + 9B(x}^5 + 4B(x}^2B(x^2} + 10B(x}^3B(x^2} + 2B(x^2}^2 + B(x}B(x^2}^2) / (8(1-B(x})) + B(x}^6 (16B(x}^2 + 6B(x}^3 + B(x^2} + B(x} (5 + 2B(x^2})) / (2(1-B(x})^2) + B(x}^7 (2 + 42B(x} + 51B(x}^2 + 24B(x}^3 + 3B(x^2}) / (12(1-B(x})^3) + B(x}^9 (17 + 8B(x}) / (8(1-B(x})^4) + 3B(x}^10 / (8(1-B(x})^5) + B(x^2}^2(B(x}^4 + 4B(x}^2 B(x^2} + 12B(x^2}^2 + B(x^4} + B(x} (8B(x^2} + 5B(x^2}^2 + B(x^4})) / (4(1-B(x^2})) + B(x^2}^4 (8 + 16B(x^2} + B(x} (19 + 8B(x^2})) / (8(1-B(x^2})^2) + 3(1 + B(x})B(x^2}^5 / (4(1-B(x^2})^3) + 2B(x}B(x^3}^2 / (6(1-B(x^3})) + B(x}B(x^4}^2 / (4(1-B(x^4})) + B(x}^2B(x^2}^2(5B(x}^3 + 2B(x^2} + B(x}(2 + B(x^2})) / (4(1-B(x})(1-B(x^2})) + B(x}^5(1+4B(x})B(x^2}^2 / (4(1-B(x})^2(1-B(x^2})) + B(x}^6 B(x^2}^2 / (4(1-B(x})^3(1-B(x^2})) + 3B(x}^2B(x^2}^4 / (8(1-B(x})(1-B(x^2})^2) + B(x^2}(1+B(x})B(x^4}^2 / (4(1-B(x^2})(1-B(x^4})), where B(x) is the generating function for rooted trees with n nodes in A000081.
EXAMPLE
a(6)=3 because there are 3 hexominoes in 2^3 space. The two vacant cells share just a face, an edge, or a vertex.
MATHEMATICA
sb[n_, k_] := sb[n, k] = b[n+1-k, 1] + If[n<2k, 0, sb[n-k, k]];
b[1, 1] := 1; b[n_, 1] := b[n, 1] = Sum[b[i, 1]sb[n-1, i]i, {i, 1, n-1}]/(n-1);
b[n_, k_] := b[n, k] = Sum[b[i, 1]b[n-i, k-1], {i, 1, n-1}];
nmax = 30; B[x_] := Sum[b[i, 1]x^i, {i, 0, nmax}]
Drop[CoefficientList[Series[(14B[x]^6 + 3B[x]^7 + 6B[x]^4B[x^2] + 6B[x]^5B[x^2] + 18B[x]^2B[x^2]^2 + 3B[x]^3B[x^2]^2 + 26B[x^2]^3 + 6 B[x]B[x^2](B[x^2]^2 + B[x^4]) + 4B[x^3]^2 + 4B[x^6]) / 24 + B[x]^3 (38B[x]^4 + 9B[x]^5 + 4B[x]^2B[x^2] + 10B[x]^3B[x^2] + 2B[x^2]^2 + B[x]B[x^2]^2) / (8(1-B[x])) + B[x]^6 (16B[x]^2 + 6B[x]^3 + B[x^2] + B[x] (5 + 2B[x^2])) / (2(1-B[x])^2) + B[x]^7 (2 + 42B[x] + 51B[x]^2 + 24B[x]^3 + 3B[x^2]) / (12(1-B[x])^3) + B[x]^9 (17 + 8B[x]) / (8(1-B[x])^4) + 3B[x]^10 / (8(1-B[x])^5) + B[x^2]^2(B[x]^4 + 4B[x]^2 B[x^2] + 12B[x^2]^2 + B[x^4] + B[x] (8B[x^2] + 5B[x^2]^2 + B[x^4])) / (4(1-B[x^2])) + B[x^2]^4 (8 + 16B[x^2] + B[x] (19 + 8B[x^2])) / (8(1-B[x^2])^2) + 3(1 + B[x])B[x^2]^5 / (4(1-B[x^2])^3) + 2B[x]B[x^3]^2 / (6(1-B[x^3])) + B[x]B[x^4]^2 / (4(1-B[x^4])) + B[x]^2B[x^2]^2(5B[x]^3 + 2B[x^2] + B[x](2 + B[x^2])) / (4(1-B[x])(1-B[x^2])) + B[x]^5(1+4B[x])B[x^2]^2 / (4(1-B[x])^2(1-B[x^2])) + B[x]^6 B[x^2]^2 / (4(1-B[x])^3(1-B[x^2])) + 3B[x]^2B[x^2]^4 / (8(1-B[x])(1-B[x^2])^2) + B[x^2](1+B[x])B[x^4]^2 / (4(1-B[x^2])(1-B[x^4])), {x, 0, nmax}], x], 6]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jun 16 2022
STATUS
approved