login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355048
Number of unoriented orthoplex n-ominoes with cell centers determining n-3 space.
7
3, 18, 122, 655, 3240, 14531, 61520, 247381, 958434, 3598594, 13180348, 47274577, 166642096, 578750970, 1984671466, 6731351834, 22612409886, 75321920403, 249028297179, 817867225710, 2670093233760, 8670380548402
OFFSET
6,1
COMMENTS
Orthoplex polyominoes are connected sets of cells of regular tilings with Schläfli symbols {}, {4}, {3,4}, {3,3,4}, {3,3,3,4}, etc. These are tilings of regular orthoplexes projected on their circumspheres. Orthoplex polyominoes are equivalent to multidimensional polyominoes that do not extend more than two units along any axis, i.e., fit within a 2^d cube. For unoriented polyominoes, chiral pairs are counted as one.
LINKS
Robert A. Russell, Trunk Generating Functions
FORMULA
a(n) = A355047(n) - A355049(n) = (A355047(n) + A355050(n)) / 2 = A355049(n) + A355050(n).
G.f.: (14B(x}^6 + 3B(x}^7 + 6B(x}^4B(x^2} + 6B(x}^5B(x^2} + 18B(x}^2B(x^2}^2 + 3B(x}^3B(x^2}^2 + 26B(x^2}^3 + 6 B(x}B(x^2}(B(x^2}^2 + B(x^4}) + 4B(x^3}^2 + 4B(x^6}) / 24 + B(x}^3 (38B(x}^4 + 9B(x}^5 + 4B(x}^2B(x^2} + 10B(x}^3B(x^2} + 2B(x^2}^2 + B(x}B(x^2}^2) / (8(1-B(x})) + B(x}^6 (16B(x}^2 + 6B(x}^3 + B(x^2} + B(x} (5 + 2B(x^2})) / (2(1-B(x})^2) + B(x}^7 (2 + 42B(x} + 51B(x}^2 + 24B(x}^3 + 3B(x^2}) / (12(1-B(x})^3) + B(x}^9 (17 + 8B(x}) / (8(1-B(x})^4) + 3B(x}^10 / (8(1-B(x})^5) + B(x^2}^2(B(x}^4 + 4B(x}^2 B(x^2} + 12B(x^2}^2 + B(x^4} + B(x} (8B(x^2} + 5B(x^2}^2 + B(x^4})) / (4(1-B(x^2})) + B(x^2}^4 (8 + 16B(x^2} + B(x} (19 + 8B(x^2})) / (8(1-B(x^2})^2) + 3(1 + B(x})B(x^2}^5 / (4(1-B(x^2})^3) + 2B(x}B(x^3}^2 / (6(1-B(x^3})) + B(x}B(x^4}^2 / (4(1-B(x^4})) + B(x}^2B(x^2}^2(5B(x}^3 + 2B(x^2} + B(x}(2 + B(x^2})) / (4(1-B(x})(1-B(x^2})) + B(x}^5(1+4B(x})B(x^2}^2 / (4(1-B(x})^2(1-B(x^2})) + B(x}^6 B(x^2}^2 / (4(1-B(x})^3(1-B(x^2})) + 3B(x}^2B(x^2}^4 / (8(1-B(x})(1-B(x^2})^2) + B(x^2}(1+B(x})B(x^4}^2 / (4(1-B(x^2})(1-B(x^4})), where B(x) is the generating function for rooted trees with n nodes in A000081.
EXAMPLE
a(6)=3 because there are 3 hexominoes in 2^3 space. The two vacant cells share just a face, an edge, or a vertex.
MATHEMATICA
sb[n_, k_] := sb[n, k] = b[n+1-k, 1] + If[n<2k, 0, sb[n-k, k]];
b[1, 1] := 1; b[n_, 1] := b[n, 1] = Sum[b[i, 1]sb[n-1, i]i, {i, 1, n-1}]/(n-1);
b[n_, k_] := b[n, k] = Sum[b[i, 1]b[n-i, k-1], {i, 1, n-1}];
nmax = 30; B[x_] := Sum[b[i, 1]x^i, {i, 0, nmax}]
Drop[CoefficientList[Series[(14B[x]^6 + 3B[x]^7 + 6B[x]^4B[x^2] + 6B[x]^5B[x^2] + 18B[x]^2B[x^2]^2 + 3B[x]^3B[x^2]^2 + 26B[x^2]^3 + 6 B[x]B[x^2](B[x^2]^2 + B[x^4]) + 4B[x^3]^2 + 4B[x^6]) / 24 + B[x]^3 (38B[x]^4 + 9B[x]^5 + 4B[x]^2B[x^2] + 10B[x]^3B[x^2] + 2B[x^2]^2 + B[x]B[x^2]^2) / (8(1-B[x])) + B[x]^6 (16B[x]^2 + 6B[x]^3 + B[x^2] + B[x] (5 + 2B[x^2])) / (2(1-B[x])^2) + B[x]^7 (2 + 42B[x] + 51B[x]^2 + 24B[x]^3 + 3B[x^2]) / (12(1-B[x])^3) + B[x]^9 (17 + 8B[x]) / (8(1-B[x])^4) + 3B[x]^10 / (8(1-B[x])^5) + B[x^2]^2(B[x]^4 + 4B[x]^2 B[x^2] + 12B[x^2]^2 + B[x^4] + B[x] (8B[x^2] + 5B[x^2]^2 + B[x^4])) / (4(1-B[x^2])) + B[x^2]^4 (8 + 16B[x^2] + B[x] (19 + 8B[x^2])) / (8(1-B[x^2])^2) + 3(1 + B[x])B[x^2]^5 / (4(1-B[x^2])^3) + 2B[x]B[x^3]^2 / (6(1-B[x^3])) + B[x]B[x^4]^2 / (4(1-B[x^4])) + B[x]^2B[x^2]^2(5B[x]^3 + 2B[x^2] + B[x](2 + B[x^2])) / (4(1-B[x])(1-B[x^2])) + B[x]^5(1+4B[x])B[x^2]^2 / (4(1-B[x])^2(1-B[x^2])) + B[x]^6 B[x^2]^2 / (4(1-B[x])^3(1-B[x^2])) + 3B[x]^2B[x^2]^4 / (8(1-B[x])(1-B[x^2])^2) + B[x^2](1+B[x])B[x^4]^2 / (4(1-B[x^2])(1-B[x^4])), {x, 0, nmax}], x], 6]
CROSSREFS
Cf. A355047 (oriented), A355049 (chiral), A355050 (achiral) A355051 (asymmetric), A000081 (rooted trees).
Other dimensions: A036367 (n-2), A000055 (n-1), A355053 (multidimensional).
Sequence in context: A295537 A183145 A127188 * A074558 A074564 A108241
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jun 16 2022
STATUS
approved