OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 121*x^4 + 928*x^5 + 6240*x^6 +...
which equals the sum of the series:
A(x) = 1 + (1 + x)^2*x + (1 + 2^3*x + x^2)^2*x^2
+ (1 + 3^3*x + 3^3*x^2 + x^3)^2*x^3
+ (1 + 4^3*x + 6^3*x^2 + 4^3*x^3 + x^4)^2*x^4
+ (1 + 5^3*x + 10^3*x^2 + 10^3*x^3 + 5^3*x^4 + x^5)^2*x^5
+ (1 + 6^3*x + 15^3*x^2 + 20^3*x^3 + 15^3*x^4 + 6^3*x^5 + x^6)^2*x^6 +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, sum(k=0, m, binomial(m, k)^3*x^k)^2*x^m)+x*O(x^n), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 26 2010
STATUS
approved