The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295539 G.f. A(x) satisfies: A(x - x^2 - x^2*A(x)) = x. 1
1, 1, 3, 11, 47, 221, 1117, 5981, 33619, 197139, 1200551, 7567125, 49233845, 329945065, 2273469967, 16082532495, 116649264071, 866551528737, 6586844135753, 51188050930421, 406394722000439, 3294052336807639, 27243245715300079, 229773018019419769, 1975311828734850201 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Compare to: C(x - x^2) = x where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
LINKS
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = x + A(x)^2 * (A(A(x)) + 1).
(2) A(x) = Series_Reversion(x - x^2 - x^2*A(x)).
(3) A(A(x)) = (A(x) - x)/A(x)^2 - 1.
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 47*x^5 + 221*x^6 + 1117*x^7 + 5981*x^8 + 33619*x^9 + 197139*x^10 + 1200551*x^11 + 7567125*x^12 + 49233845*x^13 + 329945065*x^14 + 2273469967*x^15 + 16082532495*x^16 + ...
such that A(x - x^2 - x^2*A(x)) = x.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 28*x^5 + 125*x^6 + 602*x^7 + 3079*x^8 + 16556*x^9 + 92973*x^10 + 542750*x^11 + 3282515*x^12 + 20513732*x^13 + 132193781*x^14 + 876924910*x^15 + 5979574323*x^16 + ...
A(A(x)) = x + 2*x^2 + 8*x^3 + 38*x^4 + 202*x^5 + 1156*x^6 + 6990*x^7 + 44158*x^8 + 289344*x^9 + 1956846*x^10 + 13612042*x^11 + 97142544*x^12 + 709885514*x^13 + 5304302214*x^14 + 40479776540*x^15 + 315231061286*x^16 + ...
which equals (A(x) - x)/A(x)^2 - 1.
PROG
(PARI) {a(n) = my(A=x); for(i=1, n\2, A = serreverse(x-x^2 - x^2*A +x*O(x^n))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=x); for(i=1, n, A = x + A^2 * subst(1+A, x, A +x*O(x^n))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A118927 A217216 A301409 * A359120 A174347 A062146
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)