login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295539
G.f. A(x) satisfies: A(x - x^2 - x^2*A(x)) = x.
1
1, 1, 3, 11, 47, 221, 1117, 5981, 33619, 197139, 1200551, 7567125, 49233845, 329945065, 2273469967, 16082532495, 116649264071, 866551528737, 6586844135753, 51188050930421, 406394722000439, 3294052336807639, 27243245715300079, 229773018019419769, 1975311828734850201
OFFSET
1,3
COMMENTS
Compare to: C(x - x^2) = x where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
LINKS
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = x + A(x)^2 * (A(A(x)) + 1).
(2) A(x) = Series_Reversion(x - x^2 - x^2*A(x)).
(3) A(A(x)) = (A(x) - x)/A(x)^2 - 1.
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 47*x^5 + 221*x^6 + 1117*x^7 + 5981*x^8 + 33619*x^9 + 197139*x^10 + 1200551*x^11 + 7567125*x^12 + 49233845*x^13 + 329945065*x^14 + 2273469967*x^15 + 16082532495*x^16 + ...
such that A(x - x^2 - x^2*A(x)) = x.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 28*x^5 + 125*x^6 + 602*x^7 + 3079*x^8 + 16556*x^9 + 92973*x^10 + 542750*x^11 + 3282515*x^12 + 20513732*x^13 + 132193781*x^14 + 876924910*x^15 + 5979574323*x^16 + ...
A(A(x)) = x + 2*x^2 + 8*x^3 + 38*x^4 + 202*x^5 + 1156*x^6 + 6990*x^7 + 44158*x^8 + 289344*x^9 + 1956846*x^10 + 13612042*x^11 + 97142544*x^12 + 709885514*x^13 + 5304302214*x^14 + 40479776540*x^15 + 315231061286*x^16 + ...
which equals (A(x) - x)/A(x)^2 - 1.
PROG
(PARI) {a(n) = my(A=x); for(i=1, n\2, A = serreverse(x-x^2 - x^2*A +x*O(x^n))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=x); for(i=1, n, A = x + A^2 * subst(1+A, x, A +x*O(x^n))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A118927 A217216 A301409 * A359120 A174347 A062146
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2018
STATUS
approved