The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295538 G.f. A(x) satisfies A(x)^2 = 1 + x + x*A(x)^9. 6
1, 1, 4, 32, 290, 2894, 30624, 337602, 3835395, 44588657, 527903344, 6343105788, 77153875396, 948150877136, 11754481411170, 146829606548967, 1846232392749705, 23349436820785896, 296822925777158448, 3790612373731979898, 48608130217245939310, 625636961746371994680, 8079794260209350950338, 104667769434155291997329, 1359712949654853908780859, 17709395639599543591065564 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Note that the function G(x) = 1 + x*G(x)^4 (g.f. of A002293) also satisfies the condition: G(x) = 1/G(-x*G(x)^7).
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = 1 + Series_Reversion( x/(1 + 4*x + 16*x^2 + 34*x^3 + 46*x^4 + 40*x^5 + 22*x^6 + 7*x^7 + x^8) ).
(2) F(A(x)) = x such that F(x) = -(1 - x^2)/(1 + x^9).
(3) A(x) = 1 / A(-x*A(x)^7).
a(n) ~ sqrt((1 + s^9)/(7*Pi)) / (2*n^(3/2)*r^(n - 1/2)), where r = 0.07223758934231429961770532152600550503126361567079... and s = 1.174134228398636389214738979941451774138268651734... are real roots of the system of equations 1 + r + r*s^9 = s^2, 9*r*s^7 = 2. - Vaclav Kotesovec, Nov 28 2017
From Seiichi Manyama, Apr 04 2024: (Start)
G.f. A(x) satisfies A(x) = 1 + x * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4 - A(x)^5 + A(x)^6 - A(x)^7 + A(x)^8).
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(9*k/2+1/2,n)/(9*k+1). (End)
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 32*x^3 + 290*x^4 + 2894*x^5 + 30624*x^6 + 337602*x^7 + 3835395*x^8 + 44588657*x^9 + 527903344*x^10 + 6343105788*x^11 + 77153875396*x^12 + 948150877136*x^13 + 11754481411170*x^14 + 146829606548967*x^15 +...
such that A(x)^2 = 1+x + x*A(x)^9.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 9*x^2 + 72*x^3 + 660*x^4 + 6624*x^5 + 70380*x^6 + 778164*x^7 + 8860302*x^8 + 103187376*x^9 + 1223410846*x^10 +...
A(x)^9 = 1 + 9*x + 72*x^2 + 660*x^3 + 6624*x^4 + 70380*x^5 + 778164*x^6 + 8860302*x^7 + 103187376*x^8 + 1223410846*x^9 + 14717253672*x^10 +...
A(-x*A(x)^7) = 1 - x - 3*x^2 - 25*x^3 - 221*x^4 - 2187*x^5 - 22989*x^6 - 252237*x^7 - 2855304*x^8 - 33101152*x^9 - 391010608*x^10 +...
which equals 1/A(x).
PROG
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = sqrt(1+x + x*A^9 +x*O(x^n)) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A372464 A366663 A110901 * A256183 A000766 A370099
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 05:05 EDT 2024. Contains 372742 sequences. (Running on oeis4.)