login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174347
Expansion of (1 - 2*x - sqrt(1 - 8*x + 8*x^2))/(2*x*(1-x)).
3
1, 3, 11, 47, 223, 1135, 6063, 33535, 190399, 1103231, 6497407, 38779647, 234043647, 1425869567, 8757326591, 54163521535, 337060285439, 2108928587775, 13258969458687, 83720567447551, 530692157964287, 3375836610256895
OFFSET
0,2
COMMENTS
Binomial transform of large Schroeder numbers A006318.
Hankel transform is 2^binomial(n+1,2).
Series reversion of (-1)^(n+1)*A001333(n). - Vladimir Reshetnikov, Nov 08 2015
Series reversion of x + 3*x^2 + 11*x^3 + ... is x - 3*x^2 + 7*x^3 - ... - Michael Somos, Nov 09 2015
LINKS
Paul Barry, Laurent Biorthogonal Polynomials and Riordan Arrays, arXiv preprint arXiv:1311.2292 [math.CA], 2013.
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
FORMULA
G.f.: 1/(1-x-2x/(1-x/(1-x-2x/(1-x/(1-x-2x/(1-x/(1-... (continued fraction);
a(n) = Sum_{k=0..n} binomial(n,k)*A006318(k).
D-finite with recurrence: (n+1)*a(n) + 3*(1-3n)*a(n-1) + 4*(4n-5)*a(n-2) + 8(2-n)*a(n-3) = 0. - R. J. Mathar, Dec 08 2011
a(n) ~ 2*sqrt(2*sqrt(2)-2)*(4+2*sqrt(2))^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
0 = a(n)*(+64*a(n+1) - 224*a(n+2) + 192*a(n+3) - 32*a(n+4)) + a(n+1)*(-32*a(n+1) + 208*a(n+2) - 260*a(n+3) + 52*a(n+4)) + a(n+2)*(-12*a(n+2) + 61*a(n+3) - 21*a(n+4)) + a(n+3)*(+3*a(n+3) + a(n+4)) for all n>=0. - Michael Somos, Nov 09 2015
EXAMPLE
G.f. = 1 + 3*x + 11*x^2 + 47*x^3 + 223*x^4 + 1135*x^5 + 6063*x^6 + 33535*x^7 + ...
MATHEMATICA
CoefficientList[Series[(1-2*x-Sqrt[1-8*x+8*x^2])/(2*x*(1-x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(PARI) x='x+O('x^35); Vec((1-2*x-sqrt(1-8*x+8*x^2))/(2*x*(1-x))) \\ Altug Alkan, Nov 08 2015
(Magma) m:=35; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-2*x-Sqrt(1-8*x+8*x^2))/(2*x*(1-x)))); // G. C. Greubel, Sep 22 2018
CROSSREFS
Sequence in context: A301409 A295539 A359120 * A062146 A216947 A090365
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 16 2010
STATUS
approved