login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174346
Triangle T(n, k) = (binomial(n-1, k-1)*binomial(n, k-1)/k) * ( 3^(k-1) if floor(n/2) >= k, otherwise 3^(n-k) ), read by rows.
1
1, 1, 1, 1, 9, 1, 1, 18, 18, 1, 1, 30, 180, 30, 1, 1, 45, 450, 450, 45, 1, 1, 63, 945, 4725, 945, 63, 1, 1, 84, 1764, 13230, 13230, 1764, 84, 1, 1, 108, 3024, 31752, 142884, 31752, 3024, 108, 1, 1, 135, 4860, 68040, 428652, 428652, 68040, 4860, 135, 1
OFFSET
1,5
FORMULA
T(n, k) = (binomial(n-1, k-1)*binomial(n, k-1)/k) * ( 3^(k-1) if floor(n/2) >= k, otherwise 3^(n-k) ).
T(n, n-k) = T(n, k).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 9, 1;
1, 18, 18, 1;
1, 30, 180, 30, 1;
1, 45, 450, 450, 45, 1;
1, 63, 945, 4725, 945, 63, 1;
1, 84, 1764, 13230, 13230, 1764, 84, 1;
1, 108, 3024, 31752, 142884, 31752, 3024, 108, 1;
1, 135, 4860, 68040, 428652, 428652, 68040, 4860, 135, 1;
MATHEMATICA
T[n_, k_]:= (Binomial[n-1, k-1]*Binomial[n, k-1]/k)*If[Floor[n/2]>k-1, 3^(k-1), 3^(n-k)];
Table[T[n, k], {n, 12}, {k, n}]//Flatten
PROG
(Magma)
function T(n, k)
if Floor(n/2) gt k-1 then return (1/n)*Binomial(n, k)*Binomial(n, k-1)*3^(k-1);
else return (1/n)*Binomial(n, k)*Binomial(n, k-1)*3^(n-k);
end if; return T;
end function;
[T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 26 2021
(Sage)
def A174346(n, k): return (1/n)*binomial(n, k)*binomial(n, k-1)*( 3^(k-1) if ((n//2)>k-1) else 3^(n-k) )
flatten([[A174346(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Nov 26 2021
CROSSREFS
Cf. A081582.
Sequence in context: A168625 A143681 A081582 * A144404 A014761 A073702
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 16 2010
EXTENSIONS
Edited by G. C. Greubel, Nov 26 2021
STATUS
approved