login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073702 a(n) = (A073145(n))^2. 1
9, 1, 1, 25, 25, 1, 121, 225, 9, 529, 1681, 441, 1849, 11025, 6889, 4225, 64009, 73441, 2209, 326041, 632025, 31329, 1413721, 4669921, 1320201, 4844401, 30371121, 19882681, 10582009, 174847729, 208196041, 4190209, 882030601, 1770810561 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,-1,6,3,2,-1).

FORMULA

a(n) = -a(n-2) + 6*a(n-3) + 3*a(n-4) + 2*a(n-5) - a(n-6) with a(0)=9, a(1)=1, a(2)=1, a(3)=25, a(4)=25, a(5)=1.

G.f.: (9+x+10*x^2-28*x^3-7*x^4-x^5)/(1+x^2-6*x^3-3*x^4-2*x^5+x^6).

a(n) = 2*A001644(n) + A073496(n).

MATHEMATICA

CoefficientList[Series[(9+x+10x^2-28x^3-7x^4-x^5)/(1+x^2-6x^3-3x^4-2x^5 +x^6), {x, 0, 40}], x]

LinearRecurrence[{0, -1, 6, 3, 2, -1}, {9, 1, 1, 25, 25, 1}, 40] (* Harvey P. Dale, Feb 14 2015 *)

PROG

(PARI) my(x='x+O('x^40)); Vec((9+x+10*x^2-28*x^3-7*x^4-x^5)/(1+x^2-6*x^3 -3*x^4-2*x^5+x^6)) \\ G. C. Greubel, Apr 23 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (9+x+ 10*x^2-28*x^3-7*x^4-x^5)/(1+x^2-6*x^3-3*x^4-2*x^5+x^6) )); // G. C. Greubel, Apr 23 2019

(Sage) ((9+x+10*x^2-28*x^3-7*x^4-x^5)/(1+x^2-6*x^3-3*x^4-2*x^5+x^6) ).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019

CROSSREFS

Cf. A001644, A073145, A073496.

Sequence in context: A174346 A144404 A014761 * A171822 A176490 A174158

Adjacent sequences:  A073699 A073700 A073701 * A073703 A073704 A073705

KEYWORD

nonn,easy

AUTHOR

Mario Catalani (mario.catalani(AT)unito.it), Aug 04 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)