login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370232
Triangle read by rows. T(n, k) = binomial(n + k, 2*k)^2.
1
1, 1, 1, 1, 9, 1, 1, 36, 25, 1, 1, 100, 225, 49, 1, 1, 225, 1225, 784, 81, 1, 1, 441, 4900, 7056, 2025, 121, 1, 1, 784, 15876, 44100, 27225, 4356, 169, 1, 1, 1296, 44100, 213444, 245025, 81796, 8281, 225, 1, 1, 2025, 108900, 853776, 1656369, 1002001, 207025, 14400, 289, 1
OFFSET
0,5
FORMULA
T(n, k) = [z^k] P(n, z) where P(n, z) = Sum_{k=0..n} binomial(n + k, 2*k) * Pochhammer(n - k + c, 2*k) * z^k / (2*k)! and c = 1.
T(n, k) = [z^k] hypergeom([-n, -n, 1 + n, 1 + n], [1/2, 1/2, 1], z/16).
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 9, 1;
[3] 1, 36, 25, 1;
[4] 1, 100, 225, 49, 1;
[5] 1, 225, 1225, 784, 81, 1;
[6] 1, 441, 4900, 7056, 2025, 121, 1;
[7] 1, 784, 15876, 44100, 27225, 4356, 169, 1;
MATHEMATICA
Table[Binomial[n + k, 2*k]^2, {n, 0, 7}, {k, 0, n}] // Flatten
CROSSREFS
Shifted bisection of A182878.
Cf. A370233 (c=2), A188648 (row sums), A188662 (central terms).
Sequence in context: A073702 A171822 A176490 * A174158 A181144 A142468
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 12 2024
STATUS
approved